ПромХимТех - дистрибьютор и сервисный партнер ProMinent www.promhimtech.ru zakaz@promhimtech.ru

Motor-driven and process metering pumps for all capacity ranges

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2018

Product Catalogue Volume 3

Motor Driven and Process Metering Pumps

Performance by design

Industrial applications using fluid metering technology are many and varied. They are often critical and each industry has its own specific requirements. You will find the right product here, regardless of whether you require a reliable metering pump for a routine or more complex application.

Chapter 1 offers virtually all-purpose motor-driven diaphragm metering pumps for use in the low-pressure range up to a capacity of 1,000 l/h, to ensure that your processes operate safely to meet maximum requirements. Advanced technology for demanding applications.

Chapter 2 focuses on heavy-duty pumps for extreme applications. Process metering pumps for hazardous production processes in the petrochemical industry or in the oil and gas industry, tailored specifically for high-end applications. They have proved themselves able to meter, even under very high pressure and at extreme temperatures - even toxic, corrosive and flammable liquids.

Ready for you. Anytime, anywhere.

ProMinent is close to hand no matter where you are: 55 dedicated sales, production and service companies guarantee service and availability in close proximity to our customers. For many years this has meant a local presence for our customers in over 100 countries.

Our sales team will be happy to be of assistance should you have any questions about metering technology or water treatment. You will find the contact details of your local contact at www.prominent.com/en/locations.

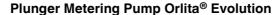
Pump Guide

You can also find information online. The ProMinent pump selection guide is available on our website. Just enter the required pump capacity and back pressure, and the Pump Guide will show you a list of suitable metering pumps. This is the quick and easy way to track down precisely the right pump for your needs.

www.pump-guide.com

New Products: Motor-Driven and Process Pumps

Upgrading of Orlita® Evolution product range using PVC and PVDF materials


Capacity range: 3 - 7,352 l/h at 21 - 10 bar

As highly robust hydraulic diaphragm metering pumps, the Orlita® Evolution with PVDF and PVC dosing heads meet the most stringent safety requirements for the capacity range 3 – 7,352 l/h at pressures up to 21 bar.

They stand out, among other things, thanks to their PTFE multi-layer diaphragm with integral diaphragm rupture warning system and diaphragm position control.

Their modular construction offers excellent flexibility as regards field of application. Following upgrading of the wetted materials using PVC and PVDF plastic, the pumps can now be used for an even wider range of applications.

For more information see page → 2-40

Capacity range of single pump: 5 - 511 l/h; 293 - 8 bar

The high-performance plunger metering pump ORLITA® Evolution enables precise pump capacities even at maximum pressure and temperatures of up to $+200\,^{\circ}$ C. The ORLITA® Evolution pump has a modular construction and thus versatile uses.

Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation.
- Excellent hydraulic efficiency

Excellent flexibility:

- The modular and compact construction with single and multiple pump versions permits a wide range of applications. In multiple pump systems up to 5 metering units can be combined, including units with different pump capacities
- 7 gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

For more information see page → 2-94

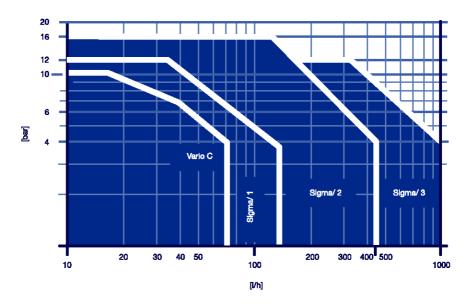
Contents

Moto	r-Drive	n and I	Process Pumps for all Capacity Ranges	page
1	Motor	-Drive	n Metering Pumps	1-1
•	1.0		ew of Motor-Driven Metering Pumps	1-1
	1.0	1.0.1	Selection Guide	1-1
		1.0.2	Installation Options	1-2
	1.1		Driven metering pump Vario C	1-3
		1.1.1	Motor-Driven metering pump Vario C	1-3
		1.1.2	Identity Code Ordering System for VAMc	1-5
		1.1.3	Spare Parts	1-6
	1.2	Motor-E	Driven Metering Pump Sigma/ 1 (Basic Type)	1-7
		1.2.1	Motor-Driven Metering Pump Sigma/ 1 (Basic Type)	1-8
		1.2.2	Spare Parts	1-12
	1.3	Motor-E	Oriven Metering Pump Sigma/ 1 (Control Type)	1-15
		1.3.1	Motor-Driven Metering Pump Sigma/ 1 (Control Type)	1-15
		1.3.2	Spare Parts	1-21
	1.4	Motor-E	Oriven Metering Pump Sigma/ 2 (Basic Type)	1-25
		1.4.1	Motor-Driven Metering Pump Sigma/ 2 (Basic Type)	1-25
		1.4.2	Spare Parts	1-29
	1.5		Oriven Metering Pump Sigma/ 2 (Control Type)	1-31
		1.5.1	Motor-Driven Metering Pump Sigma/ 2 (Control Type)	1-31
	4.0	1.5.2	Spare Parts	1-36
	1.6		Oriven Metering Pump Sigma/ 3 (Basic Type)	1-39
		1.6.1 1.6.2	Motor-Driven Metering Pump Sigma/ 3 (Basic Type)	1-39
	1.7		Spare Parts Driven Metering Pump Sigma/ 3 (Control Type)	1-43 1-45
	1.7	1.7.1	Motor-Driven Metering Pump Sigma/ 3 (Control Type)	1-45
		1.7.1	Spare Parts	1-43
	1.8		lic/Mechanical Accessories	1-50
	1.0	1.8.1	Foot Valves for Motor-Driven Metering Pumps	1-53
		1.8.2	Injection Valves for Motor-Driven Metering Pumps	1-56
		1.8.3	Back Pressure Valves / Relief Valves for	1 00
			Motor-Driven Metering Pumps	1-61
		1.8.4	Suction Lances, Suction Assemblies and Level	
			Switches for Motor-Driven Metering Pumps	1-72
		1.8.5	Fittings	1-76
		1.8.6	Pulsation Damper	1-77
		1.8.7	Accumulators	1-80
		1.8.8	Accumulators Without Diaphragm	1-81
		1.8.9	Connectors and Seals for Motor-Driven Metering Pumps	1-84
	1.9	1.8.10	Metering Pump Wall Mounting Bracket al Accessories	1-90
	1.9	1.9.1	Speed Controllers	1-91 1-91
		1.9.1	General Electrical Accessories	1-91
	1.10	_	Accessories	1-93
	1.10	•	Custom Accessories	1-98
	1.11		tion Examples	1-101
			Metering of Highly Viscous Substances	1-101
		1.11.2		1-102
		1.11.3	· ·	
			Pulsation	1-104
2	Proce	ss Mei	tering Pumps	2-1
_	2.0		ew of Process Metering Pumps	2-1
		2.0.1	Selection Guide	2-1
		2.0.2	Installation Applications	2-2
	2.1		agm Metering Pump ProMinent EXtronic®	2-3
		2.1.1	Diaphragm Metering Pump ProMinent EXtronic®	2-3
		2.1.2	Identity Code Ordering System for EXBb	2-5
		2.1.3	Spare Parts	2-6
		2.1.4	Ex-Proof Ancillary Equipment	2-8

Contents

Motor-Drive	en and Process Pumps for all Capacity Ranges	Seite
2.2	Diaphragm Metering Pump Makro TZ	2-10
	2.2.1 Diaphragm Metering Pump Makro TZ	2-10
	2.2.2 Identity Code Ordering System for TZMb	2-12
	2.2.3 Spare Parts	2-13
2.3	Diaphragm Metering Pump Makro/ 5	2-16
	2.3.1 Diaphragm Metering Pump Makro/ 5	2-16
	2.3.2 Identity Code Ordering System M5Ma	2-18
	2.3.3 Spare Parts	2-19
2.4	Hydraulic Diaphragm Metering Pump Hydro/ 2	2-21
	2.4.1 Hydraulic Diaphragm Metering Pump Hydro/ 2	2-21
	2.4.2 Identity Code Ordering System HP2a	2-24
	2.4.3 Spare Parts	2-26
2.5	Hydraulic Diaphragm Metering Pump Hydro/ 3	2-29
2.0	2.5.1 Hydraulic Diaphragm Metering Pump Hydro/ 3	2-29
	2.5.2 Identity Code Ordering System HP3a	2-23
	2.5.3 Spare Parts	2-32
0.6	·	
2.6	Hydraulic Diaphragm Metering Pump Hydro/ 4	2-35
	2.6.1 Hydraulic Diaphragm Metering Pump Hydro/ 4	2-35
	2.6.2 Identity Code Ordering System HP4a	2-38
	2.6.3 Spare Parts	2-39
2.7	Hydraulic Diaphragm Metering Pump Makro/ 5	2-41
	2.7.1 Hydraulic Diaphragm Metering Pump Makro/ 5	2-41
	2.7.2 Identity Code Ordering System for M5Ha	2-44
	2.7.3 Spare Parts	2-46
2.8	Hydraulic Diaphragm Metering Pump Orlita® Evolution 1	2-47
	2.8.1 Hydraulic Diaphragm Metering Pump Orlita® Evolution 1	2-47
2.9	Hydraulic Diaphragm Metering Pump Orlita® Evolution 2	2-51
	2.9.1 Hydraulic Diaphragm Metering Pump Orlita® Evolution 2	2-51
2.10	Hydraulic Diaphragm Metering Pump Orlita® Evolution 3	2-55
	2.10.1 Hydraulic Diaphragm Metering Pump Orlita® Evolution 3	2-55
2.11	Hydraulic Diaphragm Metering Pump Orlita® Evolution 4	2-58
	2.11.1 Hydraulic Diaphragm Metering Pump Orlita® Evolution 4	2-58
2.12	Hydraulic Diaphragm Metering Pumps Orlita® MF	2-61
	2.12.1 Hydraulic Diaphragm Metering Pump Orlita® MF	2-61
	2.12.2 Orlita® MFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps	2-65
	2.12.3 Orlita [®] MFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps	2-68
	2.12.4 Orlita® MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps	2-72
	2.12.5 Orlita® MFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps	2-75
	2.12.6 Orlita® MFS 600 (MF5b) Hydraulic Diaphragm Metering Pumps	2-79
0.40	2.12.7 Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm Metering Pumps	2-83
2.13	Hydraulic Diaphragm Metering Pump Orlita® MH	2-87
	2.13.1 Hydraulic Diaphragm Metering Pumps Orlita® MH with Metal Diaphragm	2-87
2.14	Hydraulic Metal Diaphragm Metering Pump High-pressure Orlita® MHHP	2-89
	2.14.1 Hydraulic Metal Diaphragm Metering Pump	2 90
0.45	High-pressure Orlita® MHHP	2-89
2.15	Plunger Metering Pump Sigma/ 2 (Basic Type)	2-90
	2.15.1 Plunger Metering Pump Sigma/ 2 (Basic Type)	2-90
	2.15.2 Identity Code Ordering System for SBKa	2-93
	2.15.3 Spare Parts Kits	2-94
2.16	Plunger Metering Pump Sigma/ 2 (Control Type)	2-95
	2.16.1 Plunger Metering Pump Sigma/ 2 (Control Type)	2-95
	2.16.2 Identity Code Ordering System for SCKa	2-97
	2.16.3 Spare Parts Kits	2-98

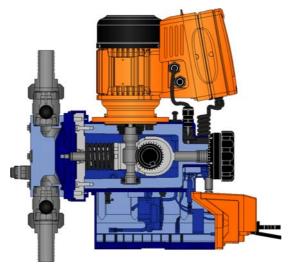
Contents


Motor-Drive	en and Process Pumps for all Capacity Ranges	page
2.17	Plunger Metering Pump Meta	2-99
2.17	2.17.1 Plunger Metering Pump Meta	2-99
	2.17.2 Identity Code Ordering System for MTKa	2-102
	2.17.3 Spare Parts	2-102
2.18	Plunger Metering Pump Makro TZ	2-103
2.10	2.18.1 Plunger Metering Pump Makro TZ	2-10 4 2-104
	2.18.2 Identity Code Ordering System TZKa	2-104
	2.18.3 Spare Parts Kits	2-107
2.19	•	2-108
2.19	2.19.1 Plunger Metering Pump Makro/ 5	2-109
	2.19.2 Identity Code Ordering System for M5Ka	2-109
	2.19.3 Spare Parts Kits	2-112
2.20	Plunger Metering Pump Orlita® Evolution 1	2-114
2.20	2.20.1 Plunger Metering Pump Orlita® Evolution 1	2-115
2.21	Plunger Metering Pump Orlita® Evolution 2	2-113
2.21	· · · · · · · · · · · · · · · · · · ·	2-117 2-117
0.00		
2.22	Plunger Metering Pump Orlita® PS	2-119
0.00	2.22.1 Plunger Metering Pump Orlita® PS	2-119
2.23	Plunger Metering Pump Orlita® DR	2-122
0.04	2.23.1 Plunger Metering Pump Orlita® DR	2-122
2.24	Diaphragm Process Pump Zentriplex	2-124
	2.24.1 Diaphragm Process Pump Zentriplex	2-124
2.25	Hydraulic/Mechanical Accessories	2-126
	2.25.1 Return/Pressure Relief Valve, Spring-loaded	2-126
	2.25.2 Safety Valve	2-127
	2.25.3 Pulsation Damner	2-128

- 3 Data Required for Specification of Metering Pump and Accessories
- 4 ProMinent® Chemical Resistance List

1.0 Overview of Motor-Driven Metering Pumps

1.0.1 Selection Guide



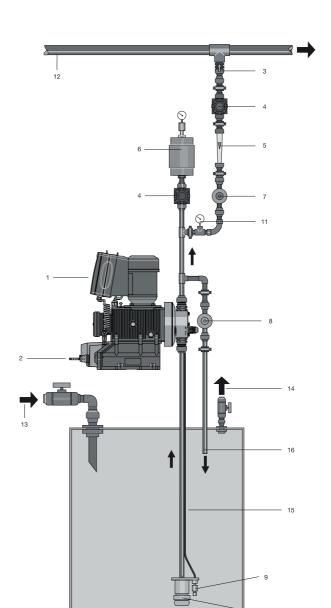
pk_2_diagramm

ProMinent offers an extensive range of metering pumps with a capacity rating of up to 1,000 l/h. All oscillating positive-displacement pumps feature a leak-free, hermetically sealed metering chamber and an identical operating structure.

Applications

- General: Chemical metering up to 1,000 l/h
- Potable water treatment: Metering of disinfectants
- Cooling circuits: Metering of disinfectants
- Waste water treatment: Metering of flocculants
- Paper industry: Metering of additives
- Plastics production: Metering of additives
- Textile industry: Metering of dyeing additives
- Electroplating: Metering of acids/lyes
- Automotive industry: Metering of cleaning agents
- Food industry: Metering of solids, concentrates, CIP cleaning agents
- Pool & Wellness: Metering of disinfectants

Sigma-bCGHR


Overview of Motor-Driven Metering Pumps

1.0.2

Installation Options

The smooth operation of metering systems depends not only on choosing the correct model for your application, but also on the correct installation of application-specific accessories. The drawing below illustrates a variety of accessory components, not all of which will be required for every plant, but which give an overview of what can be achieved in practical terms.

We are always at your service, to help you choose the right accessories for your processing application, and to provide any additional technical advice (e.g. calculating pipework requirements).

- Metering pump
- Activation and control option
- Shut-off valve
- Pulsation damper Back pressure valve
- Relief valve in the bypass line
- 10 Foot valve 11 Manometer 12 System 13 Filling

- 13 Filling 14 Bleed valve 15 Suction line
- 16 Bypass

pk_2_000_1_1AK

1.1 Motor-Driven Metering Pump Vario C

1.1.1

pk_2 126

Vario C

Motor-Driven Metering Pump Vario C

The basic pump for simple applications

Capacity range 8 - 76 l/h, 10 - 4 bar

The motor-driven metering pump Vario C delivers a high level of process quality for continuous metering within simple metering tasks. It can be used, for example, in the metering of additives or flocculants in chemical metering.

With 4 gear reduction ratios, 2 dosing head sizes and 2 dosing head materials, the Vario C motor-driven metering pump is well adapted to basic metering tasks. It is available with a three-phase or single-phase AC motor. Its pump capacity is adjusted via the stroke length, in 1% increments, with a self-locking rotary dial.

Your benefits

- Excellent suction capacity, gentle metering stroke and consistently precise metering
- Excellent process quality: Metering reproducibility is better than ± 2% within the stroke length adjustment range of 30 to 100%
- Flexible adjustment of the pump capacity by means of the stroke length in 1% increments
- Fibreglass-reinforced plastic housing
- Good adaptation to the specific application, thanks to 4 different gear reduction ratios and 2 sizes of liquid ends in 2 material versions
- Power end optionally available with three-phase or single-phase AC motor
- Customised designs are available on request

Technical Details

- Stroke length: 3 mm
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of self-locking rotary dial
- Metering reproducibility is better than ±2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404
- DEVELOPAN® diaphragm (single diaphragm with PTFE)
- Motor: Three-phase AC motor (0.07 KW, 230/400 V, 50/60 Hz) or single-phase AC motor (0.06 kW, 230 V 50 Hz or 115 V 60 Hz)
- Degree of protection: IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all motor-driven metering pumps during installation for safety reasons.

Field of application

- Chemical metering in potable water, cooling and waste water circuits
- Metering of additives, flocculants etc.

Technical Data

Type VAMc		With	1500 rpm m	notor at 50 Hz	V	/ith 1800 rpm m	notor at 60 Hz	Suction lift	Perm. pre-pressure suction side	Connection, suction/ discharge side
	Deliv	•	ate at max. k pressure	Max. stroke rate		elivery rate at back pressure	Max. stroke rate			
	bar	I/h	ml/stroke	Strokes/min	psi	I/h/gph (US)	Strokes/min	m WC	bar	G-DN
10008	10	8	4	38	145	9.6/2.5	45	7	2.8	3/4–10
10016	10	16	4	77	145	19.2/5.0	92	7	2.8	3/4–10
07026	7	26	4	120	100	31.2/8.2	144	7	2.8	3/4–10
07042	7	42	4	192	100	50.4/13.3	230	7	2.8	3/4–10
07012	7	12	5	38	100	14.4/3.8	45	6	1.7	3/4–10
07024	7	24	5	77	100	28.8/7.6	92	6	1.7	3/4–10
04039	4	40	5	120	58	48.0/12.6	144	6	1.7	3/4–10
04063	4	64	5	192	58	76.8/20.2	230	6	1.7	3/4–10

The shipping weight of all pump types is 6/7.2 kg (PVDF/SS)

1.1 Motor-Driven Metering Pump Vario C

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seat
PVT	PVDF	PVDF	PTFE	Ceramic	PTFE
SST	Stainless steel material no. 1.4404	Stainless steel material no. 1.4581	PTFE	Stainless steel material no. 1.4404	PTFE

Motor Data

Identity code characteristic		Voltage supply		Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.07 kW
		250-280 V/440-480 V	60 Hz	0.07 kW
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.06 kW
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.06 kW

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Motor-Driven Metering Pump Vario C

1.1.2

Identity Code Ordering System for VAMc

Vario Diaphragm Metering Pump

10008			
10016			
07026 7 26 7 42 7 12 7 12 7 24 24			
07042			
07012 7 12 12 14 14 14 15 14 15 16 16 16 16 16 16 16			
07024 04039 04063 Waterial Liquid end PVT PVDF, PTFE seal SST stainless steel, PTFE seal Liquid end version 0 no valve spring (standard) PVC 1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
04039 4 40 04063 4 64 Material Liquid end PVT PVDF, PTFE seal SST stainless steel, PTFE seal Liquid end version 0 no valve spring (standard) PVC 1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
04063 4 64 Material Liquid end PVT PVDF, PTFE seal SST stainless steel, PTFE seal Liquid end version 0 no valve spring (standard) PVC 1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
Material Liquid end PVT PVDF, PTFE seal SST stainless steel, PTFE seal Liquid end version 0 no valve spring (standard) PVC 1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
PVT PVDF, PTFE seal stainless steel, PTFE seal Liquid end version 0 no valve spring (standard) PVC 1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
SST stainless steel, PTFE seal Liquid end version no valve spring (standard) PVC with 2 valve springs. Hastelloy C4 Hydraulic connection standard connection PVC union nut and insert PPU union nut and insert PVDF union nut and insert Stainless steel union nut and insert PP union nut and hose nozzle			
Liquid end version 0 no valve spring (standard) PVC 1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
no valve spring (standard) PVC with 2 valve springs. Hastelloy C4 Hydraulic connection standard connection PVC union nut and insert PVC union nut and insert PVDF union nut and insert Stainless steel union nut and insert PP union nut and hose nozzle			
1 with 2 valve springs. Hastelloy C4 Hydraulic connection 0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
Hydraulic connection 1 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
0 standard connection 1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
1 PVC union nut and insert 2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
2 PP union nut and insert 3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
3 PVDF union nut and insert 4 Stainless steel union nut and insert 5 PP union nut and hose nozzle	PVC union nut and insert		
4 Stainless steel union nut and insert 5 PP union nut and hose nozzle			
5 PP union nut and hose nozzle	PVDF union nut and insert		
6 PVC union nut and hose nozzle			
7 PVDF union nut and hose nozzle			
8 Stainless steel union nut and hose nozzle			
Version			
0 with ProMinent® logo (standard)			
1 without ProMinent® logo			
M modified			
Electrical power supply			
S 3 ph, 230 V / 400 V; 50/60 Hz			
M 1 ph AC 230 V; AC 50/60 Hz			
N 1 ph AC 115 V; AC 60 Hz			
Stroke sensor			
0 no stroke sensor			
3 with stroke sensor (Namur)			
Stroke length adjustment			
0 manual (standard)			

^{*} Digits 1 and 2=back pressure [bar]; digits 3, 4, 5=flow rate [l/h]

1.1 Motor-Driven Metering Pump Vario C

.1.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PPE, PCB, PVT material versions:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 complete sealing set (O-rings or cover rings with PVT design)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 1 complete sealing set (cover rings, flat seals, ball seat)

Spare Parts Kit for Motor-Driven Metering Pump Vario c

Applicable to Identity code: Type VAMc 10008, 10016, 07026, 07042

Liquid end	Materials in contact with the medium	Order no.
FM 042 - DN 10	PPE	910753
FM 042 - DN 10	PCB	910754
FM 042 - DN 10	PVT	1003641
FM 042 - DN 10	SST	910751

Applicable to Identity code: Type VAMc 07012, 07024, 04039, 04063

Liquid end	Materials in contact with the medium	Order no.
FM 063 - DN 10	PPE	910758
FM 063 - DN 10	PCB	910759
FM 063 - DN 10	PVT	1003642
FM 063 - DN 10	SST	910756

Spare Diaphragms for Motor-Driven Metering Pump Vario c

	Order no.
Vario with FM 042 Type VAMc 10008, 10016, 07026, 07042	811458
Vario with FM 063 Type VAMc 07012, 07024, 04039, 04063	811459

Accessories

- Foot Valves for Motor-Driven Metering Pumps see page → 1-46
- Injection Valves for Motor-Driven Metering Pumps see page → 1-49
- Connectors and Seals for Motor-Driven Metering Pumps see page \rightarrow 1-75
- Suction Lances, Suction Assemblies and Level Switches for Motor-Driven Metering Pumps see page → 1-64
- Speed Controllers see page → 1-82
- Thermal metering monitor see page

Spare Parts

■ Custom Accessories See page → 1-89

1.2.1

Motor-Driven Metering Pump Sigma/ 1 (Basic Type)

The robust pump for safe and reliable use

Capacity range 17 - 144 l/h, 12 - 4 bar

The Sigma/ 1 Basic is an extremely robust motor-driven metering pump with patented multi-layer safety diaphragm for excellent process safety. It offers a wide range of power end designs, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

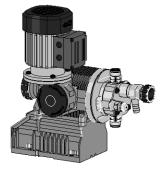
The Sigma/ 1 diaphragm metering pump together with pumps of type Sigma/ 2 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

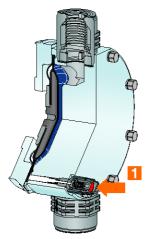
Excellent process safety and reliability:

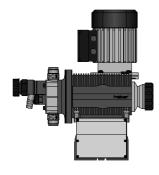
- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:


- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Adaptation to specific installation situations, as the "Liquid end on left" is available as standard
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical Details


- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30-100% stroke length adjustment range under certain defined conditions and after proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps


- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0128_SW Sigma/ 1 Basic version

P_SI_0065_C1
1: Diaphragm rupture sensor

P_SI_0152_SW Sigma / 1 liquid end on left

Motor-Driven Metering Pumps

1.2 Motor-Driven Metering Pump Sigma/ 1 (Basic Type)

Sigma Basic Type Control Functions (S1Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Speed controllers with frequency converter (identity code specification Z)

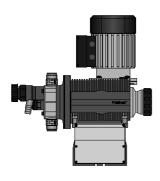
The speed controller assembly consists of a frequency converter and a variable speed motor of 0.09 kW

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510


Available for material version PV and SS.

Identity code example: S1BaH04084PV F S000S000

Sigma / 1 Basic Type Version "Liquid End on Left Side"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1BaH07042PVTS00 5 S000

P_SI_0152_SW Sigma / 1 liquid end on left

Technical Data

Type S1Ba	With 1500 rpm motor at 50 Hz			V	With 1800 rpm motor at 60 Hz			Perm. pre- pressure		n, Shipping weight	
	Delivery max. back pr		ry rate at pressure	Max. stroke rate	Deliv	very rate at max. back pressure	Max. stroke rate		suction side	discharge side	
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	m WC	bar	G-DN	kg
12017 PVT	10	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	9
12017 SST	12	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	12
12035 PVT	10	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	9
12035 SST	12	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	12
10050 PVT	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4–10	9
10050 SST	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4–10	12
10022 PVT	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	9
10022 SST	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	12
10044 PVT	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	9
10044 SST	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	12
07065 PVT	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	9
07065 SST	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	12
07042 PVT	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	10
07042 SST	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	14
04084 PVT	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	10
04084 SST	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	14
04120 PVT	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	10
04120 SST	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	14

Performance data for TTT, see type PVT

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT*	PTFE + 25% carbon	PTFE + 25% carbon	PTFE/PTFE	Ceramic	-

^{*} specifically for areas at risk from explosion

With "F" sealing material design - "physiologically safe - FDA", the ball seat is made of PVDF

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz	0.09 kW	
		265 – 280 V/440 – 480 V	60 Hz	0.09 kW	
Т	3-phase, IP 55	220 - 240 V/380 - 420 V	50 Hz	0.09 kW	with PTC, speed control range 1:5
		265 – 280 V/440 – 480 V	60 Hz	0.09 kW	
R	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz	0.09 kW	with PTC, speed adjustment range 1:20 with external fan 1-phase 230 V; 50/60 Hz
M	1-phase AC, IP 55	230 V ± 5 %	50/60 Hz	0.12 kW	
N	1-phase AC, IP 55	115 V ± 5 %	60 Hz	0.12 kW	
L1	3-phase, II2GEExellT3	220 - 240 V/380 - 420 V	50 Hz	0.12 kW	
L2	3-phase, II2GEExdIICT4	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3-phase, II2GEExellT3	250 – 280 V/440 – 480 V	60 Hz	0.12 kW	
P2	3-phase, II2GEExdIICT4	250 – 280 V/440 – 480 V	60 Hz	0.18 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

Sigma/ 1 Basic Type (S1Ba)

S1Ba	Drive t	type													
	Н		rive, dia	diaphragm											
1		Pump	type												
		•	bar	l/h			bar	l/h							
		12017	12	17		07065	7	65							
		12035	12	35		07042	7	42							
		10050	10	50		04084	4	84							
		10022	10	22		04120	4	120							
		10044	10	44		I	I								
				al of liq	uid end	1									
			PV		(max. 10										
			SS		ss steel		 /								
			TT				rbon (max. 10 bar)								
			` `		aterial	a. 5 5 (.	bon (max. 10 bar)								
				T	PTFE	seal	al								
				F		omplian									
					Diaphi		ATTS								
					S		aver sa	fety dia	ohragr	n with o	ntical ru	pture in	dicator		
					A		-	-	_				g (contact)		
					 		•	ersion	oi ii agi	ii witai i	ipiaio c	ngi iaiii ig	y (cornact)		
						0	No sp								
						1	-	2 valve s	nrinas	Haste	llov C. (1 har			
						4**							lve spring, only with PV and SS		
						5**				,		,	alve springs, only with PV and SS		
						6**							out valve spring, only with PV and SS		
						7**				,			valve spring, only with PV and SS		
						′		aulic co			.i Divi s	cai, willi	valve spring, only with tivalid 55		
							O O	Standa		ion					
							1			d PVC ir	cort				
							2			d PP ins					
							3			PVDF					
							4			1 SS***					
							7			d PVDF		ماححه			
							8			d SS ho					
							9					l hose n	077 0		
							3	Versio		Janie	33 3100	11103611	OZZIC		
								0		ProMine	nt® loa	o (stand	lard)		
								1		ut ProN	_		ara)		
								M	Modif		micrit	logo			
								5		quid en	4				
										rical po		ınnly			
									S				60 Hz, 0.09 kW		
									Т				60 Hz, with PTC		
									R				3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz		
									z				I ph 230 V, 50/60 Hz (variable speed motor + FC)		
									M				Hz, 0.09 kW		
									N				0.09 kW		
									L				Hz, (Exe, Exd)		
									P				Hz, (Exe, Exd)		
									2				(NEMA)		
									3		,	, size 56	,		
1									١				, (Dil4)		
1										0	sure ra	ting standard	4)		
1										1	,		sion ATEX-T3		
1										2			sion ATEX-13		
										-	_				
											Stroke	senso	r ke sensor (standard)		
											2		relay (reed relay)		
1									Ī		3		relay (reed relay) sensor (Namur) for hazardous locations		
											J		· , , , , , , , , , , , , , , , , , , ,		
1									Ī				length adjustment		
												0	Manual (standard)		
1												1	with servomotor, 85265 V AC 50/60 Hz		
												3	with stroke control motor 020 mA 85265 V AC 50/60 Hz		
												4	with stroke control motor 420 mA 85265 V AC 50/60 Hz		

^{* 10} bar with the PVDF and TTT version.

Dosing heads with EGEDG certificate in an electro-polished design (<Ra 0.8) or stainless steel dosing heads with seals according to EU regulation 1935/2004 are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of insert SS DN10-Rp 3/8, DN15-Rp 1/2

1.2.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 2 valves, complete
- 2 valve balls
- 2 ball seats
- 4 composite seals
- 1 elastomer sealing set (EPDM, FKM-B)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 4 complete sealing sets (cover rings, ball seat discs)
- 4 composite seals

Spare Parts Kit for Sigma/ 1 for Design With Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials ir	n contact with the medium		Order no.	
FM 50 - DN	10 PVT			1035964	
FM 50 - DN	10 TTT		with 2 valves cpl.	1077570	
FM 50 - DN	10 SST			1035966	
FM 50 - DN	10 SST		with 2 valves cpl.	1035965	

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1035967
FM 65 - DN 10	TTT	with 2 valves cpl.	1077571
FM 65 - DN 10	SST		1035969
FM 65 - DN 10	SST	with 2 valves cpl.	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1035961
FM 120 - DN 15	TTT	with 2 valves cpl.	1077572
FM 120 - DN 15	SST		1035963
FM 120 - DN 15	SST	with 2 valves cpl.	1035962

Spare Parts Kits for Sigma/ 1 for Design With Old Diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1010541
FM 50 - DN 10	SST		1010554
FM 50 - DN 10	SST	with 2 valves cpl.	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1010542
FM 65 - DN 10	SST		1010556
FM 65 - DN 10	SST	with 2 valves cpl.	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1010543
FM 120 - DN 15	SST		1010558
FM 120 - DN 15	SST	with 2 valves cpl.	1010559

Spare Parts Kit for Sigma/ 1 for FDA Design (Physiologically Safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1046466
FM 50 - DN 10	SST	without valve	1046468
FM 50 - DN 10	SST	with valve	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1046469
FM 65 - DN 10	SST	without valve	1046471
FM 65 - DN 10	SST	with valve	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1046453
FM 120 - DN 15	SST	without valve	1046465
FM 120 - DN 15	SST	with valve	1046464

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering Diaphragm (Old Version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
Spare parts kits for integrated relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
Spare parts kits for integrated relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
Spare parts kits for integrated relief valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
Spare parts kits for integrated relief valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64
- Speed Controllers see page → 1-82
- Dosierüberwachung Mengenmessung see page

Spare Parts

■ Custom Accessories See page → 1-89

1.3.1

Motor-Driven Metering Pump Sigma/ 1 (Control Type)

The intelligent pump for safe and reliable use in many applications.

Capacity range 17 - 117 l/h, 12 - 4 bar

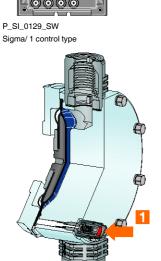
The Sigma / 1 Control can be used flexibly as an extremely robust motor-driven diaphragm metering pump. Excellent process safety and reliability is guaranteed with the patented multi-layer safety diaphragm. Highlights include removable control unit, adjustable metering profiles, as well as a variety of power end and control configurations.

The Sigma/ 1 Control diaphragm metering pump together with pumps of type Sigma/ 2 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump features a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling.
- Integrated relief valve protects the pump against overloading and reliable operation by bleed option during the discharge process.
- Metering reproducibility is better than ± 2 % with a 30 100 % stroke length adjustment range under certain defined conditions and with proper installation.


- Detachable operating unit with large illuminated LC display for outstanding user convenience.
- Metering profiles for optimum metering results.
- The Sigma product range is available in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements.
- Different control options are available, as well as easy connection to bus-networked systems by PROFIBUS[®]. Connection of PROFINET applications using the ProMinent DULCOnvert PROFIBUS[®]-PROFINET converter.
- Adaptation to specific installation situations, as the "Liquid end on left" option is available as standard.
- Customised designs are available on request.

Technical Details

- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually using self-locking rotary dial in 1% increments
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit (HMI) with large illuminated LC display
- Metering profiles for optimum metering results
- \blacksquare Power supply: 1-phase, 100 230 V $\pm 10\%,$ 240 V \pm 6%, 50/60 Hz (110 W)
- Degree of protection IP 65
 - Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0065_C1
1: Diaphragm rupture sensor

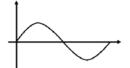
P_SI_0153_SW Sigma / 1 Control type design, liquid end on

P SI 0099 SW3

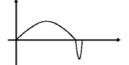
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

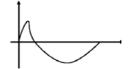
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode (standard), the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines (Version F).

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PV and SS.

Identity code example: S1CbH07042PV ${f F}$ S010S0DE .

Sigma / 1 Control Type Version "Liquid End on Left Side"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1CbH07042PVTS01 5 UA10S0DE

Sigma / 1 Control type design, liquid end on left

Technical Data

Type S1Cb	Deli	•	e at max. pressure	Max. stroke rate	Delivery rate at max. back pressure		Suction Perm. pre- lift pressure suction side		Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	m WC	bar	G-DN	kg
12017 PVT	10	21	3.8	90	145	5.5	7	1	3/4-10	9
12017 SST	12	21	3.8	90	174	5.5	7	1	3/4–10	12
12035 PVT	10	42	4.0	170	145	11.1	7	1	3/4-10	9
12035 SST	12	42	4.0	170	174	11.1	7	1	3/4–10	12
10050 PVT	10	49	4.0	200	145	12.9	7	1	3/4-10	9
10050 SST	10	49	4.0	200	145	12.9	7	1	3/4-10	12
10022 PVT	10	27	5.0	90	145	7.1	6	1	3/4-10	9
10022 SST	10	27	5.0	90	145	7.1	6	1	3/4–10	12
10044 PVT	10	53	5.1	170	145	14.0	6	1	3/4–10	9
10044 SST	10	53	5.1	170	145	14.0	6	1	3/4–10	12
07065 PVT	7	63	5.2	200	102	16.6	6	1	3/4-10	9
07065 SST	7	63	5.2	200	102	16.6	6	1	3/4–10	12
07042 PVT	7	52	9.5	90	102	13.7	3	1	1–15	10
07042 SST	7	52	9.5	90	102	13.7	3	1	1–15	14
04084 PVT	4	101	9.7	170	58	26.7	3	1	1–15	10
04084 SST	4	101	9.7	170	58	26.7	3	1	1–15	14
04120 PVT	4	117	9.7	200	58	30.9	3	1	1–15	10
04120 SST	4	117	9.7	200	58	30.9	3	1	1–15	14

Materials in Contact With the Medium

M	laterial	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
P	VT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
S	ST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

With "F" sealing material design - "physiologically safe - FDA", the ball seat is made of PVDF

Motor Data

Identity code specification		Power supply		Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz 110 W	

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Sigma/ 1 Control Type (S1Cb)

S1Cb	Drive t															
	Н	Main p	ower e	end, diap	ohragn	n										
		Pump				ı	1.			1						
		12017	bar	I/h 21		10022	bar 10	l/h 27		07042	bar	l/h 52				
		12035		42		10044		53		04084		101				
		10050		49		07065		63		04120		117				
				ng head	mate	rial										
			PV		•	10 bar)										
			SS	Stainle												
				Seal n	nateria IPTFE			1	F	FDA-c	omnlis	ant				
				1		laceme	nt bo	dv	Ι'	II DA	ompiic	AT 11.				
					S				aphra	gm wit	h optic	al ruptı	ıre inc	licato	r	
					Α		•			ıgm wit	h elect	rical si	gnal			
								d vers			-1\					
						0				tandard gs, Has		C: 0.1 k	nar			
						2				FKM se						
						3				FKM se				g		
						4**				PM sea			_			
						5**				PM sea						
						6** 7**				EPDM s EPDM s						
						8				EPDM:				_		
						9				EPDM:				_		
								aulic c								
							0			onnecti						
							1			ind PV0 ind PP		τ				
							3			ind PVI		ert				
							4	Unior	nut a	ınd stai	nless s	teel***	insert			
							7	-		ind PVI						
							8 9			ınd stai						
							9	Versi		ınd stai	niess s	ieei we	elaing	sieev	е	
								0		ProMi	nent® l	_ogo				
								1	With	out Pro	Minen	t® Log)			
								5		liquid e						
										tric po			100/	2401	/ . 60/ E	0/60 Hz, 110 W
									U		and p		10%,	240 V	±0%, 50	0/60 Hz, 110 W
										A		urope		C	2 m Au	stralia
										В	2 m S			D	2 m US	
											Rela			•	•	
											0	No re	•		. (00	24.24
											1			_	elay (23)	V, 8 A) V, 100 mA) + pacing relay (24 V, 100 mA)
											8					out + fault indicating / pacing relay (24 V - 100 mA)
												Cont	rol ve	rsion	is .	,
												0				contact with pulse control
												1				metering profiles
												6 7				DP interface, M 12 DiA 402, M12 plug), pump without operating unit
												′	(HMI) ****	vopen (C	ora 402, MT2 plug), pump willout operating unit
Langua			•												switch-	
DE	Germa												0			oad switch-off
EN ES	English Spanis													Ope S		nit (HMI) .5 m cable)
FR	French													1		2 m cable
IT	Italian													2		5 m cable
NL	Dutch													3	HMI +	10 m cable
PL	Polish													Х		operating unit (HMI)
PT	Portugi	uese													Acces	
															0	without access control with access control
																with access control

^{* 10} bar with PVDF version.

Dosing heads with EGEDG certificate in an electro-polished design (<Ra 0.8) or stainless steel dosing heads with seals according to EU regulation 1935/2004 are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of insert SS DN10-Rp 3/8, DN15-Rp 1/2

^{****} An HMI order no. 1042550 is required for manual operation, e.g. with the failure of the CAN bus

1.3.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 2 valves, complete
- 2 valve balls
- 2 ball seats
- 4 composite seals
- 1 elastomer sealing set (EPDM, FKM-B)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 4 complete sealing sets (cover rings, ball seat discs)
- 4 composite seals

Spare Parts Kit for Sigma/ 1 for Design With Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1035964
FM 50 - DN 10	SST		1035966
FM 50 - DN 10	SST	with 2 valves cpl.	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1035967
FM 65 - DN 10	SST		1035969
FM 65 - DN 10	SST	with 2 valves cpl.	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1035961
FM 120 - DN 15	SST		1035963
FM 120 - DN 15	SST	with 2 valves cpl.	1035962

Spare Parts Kits for Sigma/ 1 for Design With Old Diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1010541
FM 50 - DN 10	SST		1010554
FM 50 - DN 10	SST	with 2 valves cpl.	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1010542
FM 65 - DN 10	SST		1010556
FM 65 - DN 10	SST	with 2 valves cpl.	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1010543
FM 120 - DN 15	SST		1010558
FM 120 - DN 15	SST	with 2 valves cpl.	1010559

Spare Parts Kit for Sigma/ 1 for FDA Design (Physiologically Safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1046466
FM 50 - DN 10	SST	without valve	1046468
FM 50 - DN 10	SST	with valve	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1046469
FM 65 - DN 10	SST	without valve	1046471
FM 65 - DN 10	SST	with valve	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1046453
FM 120 - DN 15	SST	without valve	1046465
FM 120 - DN 15	SST	with valve	1046464

Spare Parts Kits for Integrated Relief Valve (S1Ca, S1Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
Spare parts kits for integrated relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
Spare parts kits for integrated relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
Spare parts kits for integrated relief valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
Spare parts kits for integrated relief valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Spare Parts Kits for Integrated Bleed Valve (S1Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	For material	Seals	Order no.	
ETS	PVT/SST	FKM-A/EPDM	1043785	

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering Diaphragm (Old Version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
Spare parts kits for integrated relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
Spare parts kits for integrated relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
Spare parts kits for integrated relief valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
Spare parts kits for integrated relief valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Protective cowling

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall bracket

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383

Accessories of CANopen operation

An operating unit is needed for the manual operation of a CANopen pump.

	Order no.
Operating unit (HMI)	1042550

Accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64
- Dosierüberwachung Mengenmessung see page

Spare Parts

■ Custom Accessories See page → 1-89

P SI 0065 C1

1: Diaphragm rupture sensor

Motor-Driven Metering Pump Sigma/ 2 (Basic Type)

The robust pump for safe and reliable use.

Capacity range 50 - 420 l/h, 16 - 4 bar

Robust motor-driven diaphragm metering pumps, like the Sigma/ 2 Basic guarantee excellent process reliability with their patented multi-layer safety diaphragm. The diaphragm metering pump offers a wide range of power end versions, even for Exe and Exde areas with ATEX certification.

The Sigma/ 2 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:

- The Sigma product range is available as standard in the "Physiologically safe in respect of wetted materials" "F" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas, and different flange designs for the use of customised motors
- Customised designs are available on request

Technical Details

- Stroke length: 5 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

Sigma Basic Type Control Functions (S2Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Speed controllers with frequency converter (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW.

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA-No. 21 CFR § 177.1550
- Material PVDF: FDA-No. 21 CFR § 177.2510

Available for material version PV and SS.

Identity code example: S2BaHM07220PV F S000S000

Technical Data

Type S2Ba	W	ith 150	0 rpm mo	otor at 50 Hz	Wit	th 1800 rpm mo	otor at 60 Hz	Suc- tion lift	Perm. pre- pressure suction	Connection suction/ discharge	Shipping weight
	Delive	•	e at max. pressure	Max. stroke rate		elivery rate at	Max. stroke rate		side	side	
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	m WC	bar	G-DN	kg
16050 PVT	10	50	11.4	73	145	60.0/15.8	87	7	3	1–15	15
16050 SST	16	47	11.4	73	232	56.0/14.7	87	7	3	1–15	20
16090 PVT	10	88	11.4	132	145	106.0/28.0	158	7	3	1–15	15
16090 SST	16	82	11.4	132	232	98.4/25.9	158	7	3	1–15	20
16130 PVT	10	135	10.9	198	145	156.0/41.2	238	7	3	1–15	15
16130 SST	16	124	10.9	198	232	148.0/39.0	238	7	3	1–15	20
07120 PVT	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	16
07120 SST	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	24
07220 PVT	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2–25*	16
07220 SST	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2-25*	24
04350 PVT	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	16
04350 SST	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	24

Performance data for TTT, see type PVT

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT**	PTFE + 25% carbon	PTFE + 25% carbon	PTFE/PTFE	Ceramic/glass*	-

^{*} with 07120, 07220, 04350

With "F" sealing material design - "physiologically safe - FDA", the ball seat is made of PVDF

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz	0.25 kW	
		220 – 280 V/440 – 480 V	60 Hz	0.25 kW	
Т	3-phase, IP 55	220 – 240 V/380 – 420 V 220 – 280 V/440 – 480 V	50 Hz 60 Hz	0.25 kW	with PTC, speed control range 1:5
R	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz	0.37 kW	with PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60 Hz
М	1-phase AC, IP 55	230 V ± 5 %	50/60 Hz	0.18 kW	
N	1-phase AC, IP 55	115 V ± 5 %	60 Hz	0.18 kW	
L1	3-phase, II2GEExellT3	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	
L2	3-phase, II2GEExdIICT4	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3-phase, II2GEExellT3	250 – 280 V/440 – 480 V	60 Hz	0.18 kW	
P2	3-phase, II2GEExdIICT4	250 – 280 V/440 – 480 V	60 Hz	0.21 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

^{**} specifically for areas at risk from explosion

Sigma/ 2 Basic Type (S2Ba)

S2Ba	Drive t	уре											
	НМ												
		Pump type											
			bar	l/h			bar	l/h					
		16050	16	47		07120	7	126					
		16090	16	82		07220	7	220					
		16130	16	124		04350	4	350					
			Liquid	d end r	nateria								
			PV		(max.								
			SS		ess ste								
			TT	PTFE	+ 25%	carbon	(max. 1	0 bar)					
					materia		`						
				Т	PTFE								
				F	FDA-	compliar	nt						
					Diaph	ragm							
					S		ayer sa	fety dia	aphragr	n with or	otical ru	oture inc	dicator
					Α	Multi-la	ver sa	fety dia	aphragr	n with ru	pture si	gnalling	(contact)
						Liquid	-						
						0	No sp						
						1		•	springs	s, Hastel	lov C4.	0.1 bar	
						4**							ve spring, only with PV and SS
						5**							alve springs, only with PV and SS
						6**							out valve spring, only with PV and SS
						7**							valve spring, only with PV and SS
									onnec			,	
							0	Stand					
							1	Unior	nut an	d PVC ir	nsert		
							2	Unior	nut an	d PP ins	ert		
							3			d PVDF			
							4			d SS***			
							7	Unior	nut an	d PVDF	hose no	ozzle	
							8			d SS ho			
							9	Unior	nut an	d stainle	ess stee	l hose n	ozzle
								Versi	ion				
							0 With ProMinent® logo (standard)						
								1		ut ProM			,
								М	Modif	ied		•	
									Elect	rical po	wer sui	vlac	
									S			0 V 50/6	60 Hz
									Т	3 ph, 2	30 V/40	0 V 50/6	60 Hz, with PTC
									R	Variabl	e speed	motor 3	3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz
									Z	Speed	control	compl 1	ph 230 V, 50/60 Hz (variable speed motor + FC)
									M			V/50/60	·
									N			/, 60 Hz	
									L				Hz, (Exe, Exd)
									Р				Hz, (Exe, Exd)
									1				nge, Gr. 71 DIN
									2	No mot	or, with	flange N	NEMA 56 C
									3	No mot	or, with	B5 fland	ge, Gr. 63 DIN
											ure rat		
										0		standard	d)
										1	,		sion ATEX-T3
									1	2			sion ATEX-T4
												senso	
											0		oke sensor (standard)
											2		relay (reed relay)
											3		sensor (Namur) for hazardous locations
]		e length adjustment
												0	Manual (standard)
									1			1	with servomotor, 85265 V AC 50/60 Hz
												3	with stroke control motor 020 mA 85265 V AC 50/60 Hz
												4	with stroke control motor 420 mA 85265 V AC 50/60 Hz

^{* 10} bar with the PVDF and TTT version.

Dosing heads with EGEDG certificate in an electro-polished design (<Ra 0.8) or stainless steel dosing heads with seals according to EU regulation 1935/2004 are available on request.

 $^{^{\}star\star}$ Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN15-Rp 1/2, DN25/20-G 3/4 $\,$

Motor-Driven Metering Pumps

Motor-Driven Metering Pump Sigma/ 2 (Basic Type)

1.4.2 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 2 valves, complete
- 2 valve balls
- 2 ball seats
- 4 composite seals
- 1 elastomer sealing set (EPDM, FKM-B)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 2 ball seat discs
- 4 composite seals

Spare Parts Kit for Sigma/ 2 for Design With Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		1035951
FM 130 - DN 15	TTT	with 2 valves cpl.	1077573
FM 130 - DN 15	SST		1035957
FM 130 - DN 15	SST	with 2 valves cpl.	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		1035953
FM 350 - DN 25	TTT	with 2 valves cpl.	1077574
FM 350 - DN 25	SST		1035960
FM 350 - DN 25	SST	with 2 valves cpl.	1035959

Spare Parts Kits for Sigma/ 2 for Design With Old Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		740324
FM 130 - DN 15	SST		740326
FM 130 - DN 15	SST	with 2 valves cpl.	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		740325
FM 350 - DN 25	SST		740327
FM 350 - DN 25	SST	with 2 valves cpl.	740329

Spare Parts Kits for Sigma/ 2 With FDA Design (Physiologically Safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		1046472
FM 130 - DN 15	SST	without valve	1046473
FM 130 - DN 15	SST	with valve	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		1046475
FM 350 - DN 25	SST	without valve	1046476
FM 350 - DN 25	SST	with valve	1046477

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering Diaphragm (Old Version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
Spare parts kits for integrated relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
Spare parts kits for integrated relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
Spare parts kits for integrated relief valve 10 bar	PVT	FKM-A/EPDM	1031201
Spare parts kit for relief valve 16 bar	SST	FKM-A/EPDM	1031203

Gear Oil

Volume	Order no.
I	
1	1004542
	Volume I

Accessories

- Foot Valves for Motor-Driven Metering Pumps see page → 1-46
- Injection Valves for Motor-Driven Metering Pumps see page → 1-49
- Connectors and Seals for Motor-Driven Metering Pumps see page → 1-75
- Suction Lances, Suction Assemblies and Level Switches for Motor-Driven Metering Pumps see page → 1-64
- Speed Controllers see page → 1-82
- Thermal metering monitor see page

Spare Parts

■ Custom Accessories See page → 1-89

1.5.1

Motor-Driven Metering Pump Sigma/ 2 (Control Type)

The intelligent pump for safe and reliable use in many applications.

Capacity range 61 - 353 l/h, 16 - 4 bar

The Sigma/ 2 Control is a robust motor-driven diaphragm metering pump with a patented multi-layer safety diaphragm for outstanding process safety and reliability. The integrated automatic overload shutdown offers further protection for the pump. Removable operating unit and adjustable metering profiles enable the versatile use of this pump.

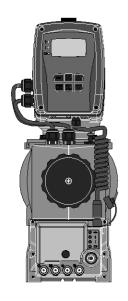
The Sigma/ 2 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

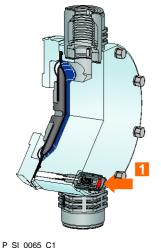
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduce pressure surges caused by blockages. =NEW Feature=
- Automatic, integrated overload shut-down to protect the pump and bleed option during the metering process to ensure reliable operation

Flexible adaptation to the process:


- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by PROFIBUS®
- Customised designs are available on request

Technical Details


- Stroke length: 5 mm,
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually using self-locking rotary dial in 1 % increments
- Metering reproducibility is better than ± 2 % in the 30 100 % stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated automatic overload switch-off as a pump protection function
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- \blacksquare Power supply: 1-phase, 100 230 V \pm 10 %, 240 V \pm 6 %, 50/60 Hz (220 W)
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0131_SW Sigma/ 2 control type

1: Diaphragm rupture sensor

Motor-Driven Metering Pumps

1.5 Motor-Driven Metering Pump Sigma/ 2 (Control Type)

Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.

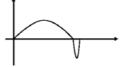
Overload switch-off

P SI 0099 SW3

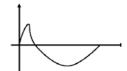
The distinguishing feature of the new Sigma product range is its automatic overload shut-down to protect the pump. The motion and speed profiles are detected and evaluated together with the energy demand. This data enables the energy supply to be limited to the amount of energy actually needed. In addition, an analysis of the energy requirement leads to automatic monitoring of the metering pump in the event of an overload situation. This facilitates the internal overload shut-down, offering additional protection for the motor-driven metering pump. The overload shut-down requires standard operation of the metering profile.

Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode (standard), the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" "F" design comply with the FDA guidelines (Version F).

FDA guidelines:

- Material PTFE: FDA-No. 21 CFR § 177.1550
- Material PVDF: FDA-No. 21 CFR § 177.2510

Available for material version PV and SS.

Identity code example: S2CbH16050PV F S010UA10S0DE

Technical Data

Type S2Cb	Delivery rate at max. back pressure		Max. stroke rate	Deli	very rate at max. back pressure	Suc- tion lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight	
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	m WC	bar	G-DN	kg
16050 PVT	10	61	11.4	90	145	16.1	7	2	1–15	15
16050 SST	16	56	10.4	90	232	14.8	7	2	1–15	20
16090 PVT	10	109	11.4	160	145	28.8	7	2	1–15	15
16090 SST	16	99	10.3	160	232	26.2	7	2	1–15	20
16130 PVT	10	131	10.9	200	145	34.6	7	2	1–15	15
16130 SST	16	129	10.9	200	232	34.1	7	2	1–15	20
07120 PVT	7	150	27.4	90	102	39.6	5	1	1 1/2–25	16
07120 SST	7	150	27.4	90	102	39.6	5	1	1 1/2–25	24
07220 PVT	7	271	27.7	160	102	71.6	5	1	1 1/2–25	16
07220 SST	7	271	27.7	160	102	71.6	5	1	1 1/2–25	24
04350 PVT	4	353	29.4	200	58	93.3	5	1	1 1/2–25	16
04350 SST	4	353	29.4	200	58	93.3	5	1	1 1/2–25	24

^{*} With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

^{*} With 07120, 07220, 04350

With "F" sealing material design - "physiologically safe - FDA", the ball seat is made of PVDF

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	$100 - 230 \text{ V} \pm 10 \% / 240 \text{ V} \pm 6 \%$	50/60 Hz	220 W	

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Sigma/ 2 Control Type (S2Cb)

S2Cb	Drive t	vpe														
0200	Н		ower en	d, diapł	nragm											
		Pump	type													
			bar	l/h			bar	l/h			bar	l/h				
		16050		56		16130		129		07220		271				
		16090		99		07120	/	150		04350	4	353				
			PV		materia (max. 1			ISS	I Staink	ess stee						
			FV		ınax. ı naterial			33	Stairile	255 5166	·I					
				T	PTFE				lF	IFDA-c	ompliar	nt				
						cemen	t body		1							
					S				ohragm	with op	tical rup	ture ind	licator			
					Α	Multi-la	ayer sa	ety dia	ohragm	with ele	ctrical s	signal				
								versio								
						0			g (stand		0. 0.					
						2				Hastello 1 seal, r						
						3				1 seal, i 1 seal, v			n			
						4**				seal, n			_			
						5**				seal, w						
						6**				M seal,						
						7**				M seal,			•			
						8				M seal,			_			
						9			ve, EPD nnecto)M seal,	, with va	uve spri	ng			
							nyara 0		nnecto ard con							
							1			PVC in	sert					
							2	Union	nut and	PP inse	ert					
							3			PVDF						
							4			stainle			rt			
							7 8			PVDF stainle:			lo			
							9						g sleeve			
								Version					,			
								0		roMine	nt® Log	0				
								1	Withou	ut ProM	inent® L	_ogo				
										ic pow			20/ 040	V - 00/	F0/00 I	I- 000 W
									U)%, 240	V ±6%	, 50/60 F	Iz, 220 W
										A	and pl			C	2 m Aus	stralia
										В	2 m S			D	2 m US	
											Relay				1	
											0	No rela	ay			
											1				(230 V, 8	
											3		ndicatin 100 mA		(24 V, 10	00 mA) + pacing relay
											8				output + 1	fault indicating / pacing relay
												(24 V -	· 100 m/	۹) آ		
													ol versi			to at with a deep and all
												0		0 + exte		tact with pulse control
												6				P interface, M 12
												7				402, M12 plug), pump without
															(HMI) **	**
Langu DE	age Germa	n											Overlo		itch-off	d switch-off
EN	English												1			hut-down (standard profile only) *****
ES	Spanis														ating uni	
FR	French													S		5 m cable)
IT	Italian													1		2 m cable
NL	Dutch													2		m cable
PL	Polish													3		0 m cable
PT	Portugi	Jese I	ı											Х		operating unit (HMI)
															Access 0	s code I without access control
															1	with access control

Dosing heads with EGEDG certificate in an electro-polished design (<Ra 0.8) or stainless steel dosing heads with seals according to EU regulation 1935/2004 are available on request.

^{* 10} bar for PVDF version.

** Standard with tube nozzle in the bypass. Threaded connection on request.

*** Internal thread of the insert SS DN15-Rp 1/2, DN25/20-G 3/4

^{****} An HMI order no. 1042549 is required for manual operation, e.g. with the failure of the CAN bus
**** Automatic overload shut-down standard without metering profile

Motor-Driven Metering Pumps

1.5 Motor-Driven Metering Pump Sigma/ 2 (Control Type)

1.5.2 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 2 valves, complete
- 2 valve balls
- 2 ball seats
- 4 composite seals
- 1 elastomer sealing set (EPDM, FKM-B)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 2 ball seat discs
- 4 composite seals

Spare Parts Kit for Sigma/ 2 for Design With Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		1035951
FM 130 - DN 15	SST		1035957
FM 130 - DN 15	SST	with 2 valves cpl.	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		1035953
FM 350 - DN 25	SST		1035960
FM 350 - DN 25	SST	with 2 valves cpl.	1035959

Spare Parts Kits for Sigma/ 2 for Design With Old Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		740324
FM 130 - DN 15	SST		740326
FM 130 - DN 15	SST	with 2 valves cpl.	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		740325
FM 350 - DN 25	SST		740327
FM 350 - DN 25	SST	with 2 valves cpl.	740329

Spare Parts Kits for Sigma/ 2 With FDA Design (Physiologically Safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		1046472
FM 130 - DN 15	SST	without valve	1046473
FM 130 - DN 15	SST	with valve	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liq	uid end	Materials in contact with the medium		Order no.
FM	350 - DN 25	PVT		1046475
FM	350 - DN 25	SST	without valve	1046476
FM	350 - DN 25	SST	with valve	1046477

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering Diaphragm (Old Version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare Parts Kit for Integrated Relief Valve (S2Ca, S2Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
Spare parts kits for integrated relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
Spare parts kits for integrated relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
Spare parts kits for integrated relief valve 10 bar	PVT	FKM-A/EPDM	1031201
Spare parts kit for relief valve 16 bar	SST	FKM-A/EPDM	1031203

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare Parts Kits for Integrated Bleed Valve (S2Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	For material	Seals	Order no.
ETS	PVT/SST	FKM-A/EPDM	1043785

Protective Cowling for Operating Unit (HMI)

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall Bracket for Operating Unit (HMI)

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383

Accessories of CANopen operation

An operating unit is needed for the manual operation of a CANopen pump.

	Order no.
Operating unit (HMI)	1042549

Accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64

Spare Parts

■ Custom Accessories See page → 1-89

1.6.1

P SI 0132 SW

Sigma/3

Motor-Driven Metering Pump Sigma/ 3 (Basic Type)

The robust pump for safe and reliable use

Capacity range 146 - 1,030 l/h, 12 - 4 bar

The patented multi-layer safety diaphragm for excellent process safety and reliability is just one feature of the extremely robust motor-driven diaphragm metering pump Sigma/ 3 Basic. It also offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The Sigma/ 3 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 2 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:

- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExelIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

Sigma Basic Type Control Functions (S3Ba)

Stroke length actuator/controller

Actuator with stroke positioning motor for automatic stroke length adjustment. Setting time approx. 1 sec for 1 % stroke length. Resistance potentiometer 1 $k\Omega$. Enclosure rating IP 54.

Controller consisting of actuator with stroke positioning motor and in-built follower for stroke length adjustment via a standard signal. Standard signal current input 0/4-20 mA corresponds to stroke length 0 - 100%. Can be switched between manual and automatic operation, key switch for stroke adjustment for manual operation. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Speed controllers in metal housing (identity code characteristic Z)

The speed controller assembly consists of a speed controller and a 0.55 kW variable speed motor.

"Physiologically safe (FDA) in respect of wetted materials" design "F"

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines (Version F).

FDA guidelines:

Material PTFE: FDA-No. 21 CFR § 177.1550
 Material PVDF: FDA-No. 21 CFR § 177.2510

Available for material version PV and SS and DN 25 ball valve.

Identity code example: S3BaH120330PV F S000S000

Technical Data

Type S3Ba		ivery rat	0 rpm moto e at max. pressure	or at 50 Hz Max. stroke rate	With 1800 rpm mo Delivery rate at max. back pressure		Max.	Perm. pre- pressure suction side	Suc- tion lift	Connection, suction/dis- charge side	Shipping weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	bar	m WC	G-DN	kg
120145 PVT	10	146	33.7	72	145	174/45.9	86	2	5	1 1/2–25	22
120145 SST	12	146	33.7	72	174	174/45.9	86	2	5	1 1/2–25	26
120190 PVT	10	208	33.7	103	145	251/66.3	124	2	5	1 1/2–25	22
120190 SST	12	208	33.7	103	174	251/66.3	124	2	5	1 1/2–25	26
120270 PVT	10	292	33.8	144	145	351/92.7	173	2	5	1 1/2–25	22
120270 SST	12	292	33.8	144	174	351/92.7	173	2	5	1 1/2–25	26
120330 PVT*	10	365	33.8	180	_		_	2	5	1 1/2–25	22
120330 SST*	12	365	33.8	180	_		-	2	5	1 1/2–25	26
070410 PVT	7	410	95.1	72	102	492/129.9	86	1	4	2-32-**	24
070410 SST	7	410	95.1	72	102	492/129.9	86	1	4	2-32-**	29
070580 PVT	7	580	95.1	103	102	696/183.8	124	1	4	2-32-**	24
070580 SST	7	580	95.1	103	102	696/183.8	124	1	4	2-32-**	29
040830 PVT	4	830	95.1	144	58	1,000/264.1	173	1	3	2-32-**	24
040830 SST	4	830	95.1	144	58	1,000/264.1	173	1	3	2-32-**	29
041030 PVT*	4	1,030	95.1	180	-		_	1	3	2-32-**	24
041030 SST*	4	1,030	95.1	180	-		-	1	3	2-32-**	29

Performance data for TTT, see type PVT

Materials in Contact With the Medium

		DN 25 ball valves			DN 32 plate valves			
Material	Seals	Suction/pressure connector on dosing head	Valve balls	Valve seats	Suction/pressure connector on dosing head	Valve plates/valve springs	Valve seats	Integral relief valve
PVT	PTFE	PVDF	Glass	PTFE**	PVDF	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM
SST	PTFE	Stainless steel 1.4581	Stainless steel 1.4404	PTFE**	Stainless steel 1.4581	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/ FKM or EPDM
TTT***	PTFE	PTFE + 25% carbon	Ceramic	PTFE**	PVDF	Ceramic/ Hast C. + CTFE*	PTFE	ı

- * The valve spring is coated with CTFE (resistance similar to PTFE)
- ** On design "F", the ball seat is made of PVDF, only for DN 25 ball valves
- *** Specifically for areas at risk from explosion DN25: PTFE + 25% carbon; DN32 plate valves: PVDF

Motor Data

Identity code specification	Power supply	Δ/Υ		Remarks
S	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz 0.37 k\	V
		250 – 280 V/440 – 480 V	60 Hz 0.37 k\	V
Т	3-phase, IP 55	220 - 240 V/380 - 420 V	50 Hz 0.37 k\	V with PTC, speed control range 1:5
		250 – 280 V/440 – 480 V	60 Hz	
R	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz 0.55 k\	V with PTC, speed adjustment range 1:20 with external
				fan 1-phase 230 V; 50/60 Hz
M	1-phase AC, IP 55	230 V ± 5 %	50/60 Hz 0.55 k\	V
N	1-phase AC, IP 55	115 V ± 5 %	60 Hz 0.55 k\	V
L1	3-phase, II2GEExellT3	220 - 240 V/380 - 420 V	50 Hz 0.37 k\	V
L2	3-phase, II2GEExdIICT4	220 – 240 V/380 – 420 V	50 Hz 0.37 k\	W with PTC, speed control range 1:5
P1	3-phase, II2GEExellT3	250 - 280 V/440 - 480 V	60 Hz 0.37 k\	V
P2	3-phase, II2GEExdIICT4	250 – 280 V/440 – 480 V	60 Hz 0.37 k\	V with PTC, speed control range 1:5
V2	3-phase, II2GEExdIICT4	400 V ± 10 %	50/60 Hz 0.55 k\	V Ex-variable speed motor with integrated frequency converter. Mains feed: 3-phase + neutral + earth, adjustment range 1:10

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request. Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} only available for 50 Hz, ** DN32 plate valves with valve spring

Sigma/ 3 Basic Type (S3Ba)

S3Ba	Drive													
	Н	Main driv	e, diap	hragm										
		Pump ty	-			,								
		100115	bar	I/h		070440	bar	l/h						
		120145	12	146		070410		410						
			12	208		070580		580						
			12	292		040830		830						
		120330	12	365		041030	4	1,030						
				d end r										
			PV		•	. 10 bar)								
			SS TT		ess st		/·	10 haw						
			11			carbon	(max.	io bar)						
				T	mate IPTFE									
				F		complian	t (only	with 12	harv	reion)				
				l'			t (Offiny	WILLI 12	. Dai v	5131011)				
					Diaphragm S Multi-layer safety diaphragm with optical rupture indicator									
					A				_			•		
					l'`	,	Multi-layer safety diaphragm with rupture signalling (contact)							
		Liquid end version 0 No valve springs												
		With 2 valve springs, Hastelloy C 4; 0.1 bar (standard for DN 32)									par (standard for DN 32)			
		4** With pressure relief valve, FKM seal, no valve springs, only with PV and SS												
		5** With pressure relief valve, FKM seal with valve springs (standard at DN 32), only with PV and SS									valve springs (standard at DN 32), only with PV and SS			
						6**	With p	ressur	e relief	valve,	EPDM	seal, w	ithout valve spring, only with PV and SS	
						7**	With p	ressur	e reliet	valve,	EPDM	seal, w	ith valve springs (standard at DN 32), only with PV and SS	
							Hydra	aulic c	onnec	tion				
							0					tor (as	technical data)	
							1			d PVC				
							2			d PP in				
							3				insert			
							4			d SS in				
							7				hose			
							8 9				ose noz			
							9			u staini	ess sie	einose	nozzle	
								Version 0		ProMin	ent® lo	ao		
								1			Minent [®]	_		
								M	Modi			.ogc		
											ower s	vlaqu		
									S		230 V/4			
									Т	3 ph, 2	230 V/4	00 V, v	vith PTC	
									R	Variat	ole spe	ed moto	or 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz	
									Z			ol comp	I 1 ph 230 V//400 V (variable speed motor + FC)	
									М	1 ph, 2				
									N	1 ph,				
									L				.37 kW, 50 Hz, (Exe, Exd)	
									P			,	.37 kW, 60 Hz, (Exe, Exd)	
									V (2)				or with integr. FC Exd (delivery with frame)	
									1				ange, size 80 (DIN)	
									2				NEMA flange	
									3				ange, size 71 (DIN)	
										0	sure ra	aung		
										1		otor ve	rsion ATEX-T3	
										2	-			
									2 Exd motor version ATEX-T4 Stroke sensor					
											0		oke sensor (standard)	
											2		g relay (read relay)	
											3		sensor (Namur) for explosion-proof application	
1													e length adjustment	
1												0	Manual (standard)	
1												1	with servomotor, 85265 V AC 50/60 Hz	
1												3	with stroke control motor 020 mA 85265 V AC 50/60 Hz	
1												4	with stroke control motor 420 mA 85265 V AC 50/60 Hz	

- * 10 bar for the PVDF and TTT version
- ** Standard with threaded connector in the bypass. Hose nozzle on request

Dosing heads with EGEDG certificate in an electro-polished design (<Ra 0.8) or stainless steel dosing heads with seals according to EU regulation 1935/2004 are available on request.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

^{***} Internal thread of the insert SS DN25-Rp 1, DN32-Rp 1 1/4

1.6.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT/ TTT material version:

- 1 diaphragm
- 2 complete valves
- 2 valve balls and/or valve plate with spring for DN 32
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat housings
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls and/or valve plate with spring for DN 32
- 2 ball seat discs
- 4 composite seals

Spare Parts Kits Sigma/ 3 for Design With Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1034678
FM 330 - DN 25	TTT	with 2 valves cpl.	1077575
FM 330 - DN 25	SST		1034679
FM 330 - DN 25	SST	with 2 valves cpl.	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT		1034681
FM 1000 - DN 32	SST		1034682
FM 1000 - DN 32	SST	with 2 valves cpl.	1034683

Spare Parts Kits for Sigma/ 3 for Design With Old Diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1005308
FM 330 - DN 25	SST		1005310
FM 330 - DN 25	SST	with 2 valves cpl.	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT		1020032
FM 1000 - DN 32	SST		1005311
FM 1000 - DN 32	SST	with 2 valves cpl.	1005313

Spare Parts Kit for Sigma/ 3 With FDA Design (Physiologically Safe)

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1046478
FM 330 - DN 25	SST	without valve	1046479
FM 330 - DN 25	SST	with valve	1046480

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603

Metering Diaphragm (Old Version)

	Order no.
FM 330 Identity code: Type 120145, 1201	90, 120270, 120330 1004604
FM 1000 Identity code: Type 070410, 070	580, 040830, 041030 1002835

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A O-rings each

	For material	Seals	Order no.
Spare parts kit for relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031204
Spare parts kit for relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031205
Spare parts kits for integrated relief valve 10 bar	PVT	FKM-A/EPDM	1031201
Spare parts kits for integrated relief valve 12 bar	SST	FKM-A/EPDM	1031202

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- Foot Valves for Motor-Driven Metering Pumps see page → 1-46
- Injection Valves for Motor-Driven Metering Pumps see page → 1-49
- Connectors and Seals for Motor-Driven Metering Pumps see page → 1-75
- Suction Lances, Suction Assemblies and Level Switches for Motor-Driven Metering Pumps see page → 1-64
- Speed Controllers see page → 1-82
- Thermal metering monitor see page

Spare Parts

■ Custom Accessories See page → 1-89

171

Motor-Driven Metering Pump Sigma/ 3 (Control Type)

The intelligent pump for safe and reliable use in many applications

Capacity range 182 - 1,040 l/h, 12 - 4 bar

The motor-driven diaphragm metering pump Sigma/ 3 Control guarantees excellent process reliability, thanks to its patented multi-layer safety diaphragm. Intelligent features, such as removable operating unit and adjustable metering profiles, as well as a variety of power end and control configurations, enable the versatile use of this pump.

The Sigma/ 3 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 2 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

P SI 0101 SW

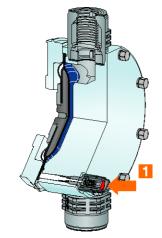
Sigma/ 3 control type

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading and reliable operation by bleed option during the discharge process

Flexible adaptation to the process:


- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by integrated PROFIBUS® module. Connection of PROFINET applications using the ProMinent DULCOnvert PROFIBUS®-PROFINET converter
- Customised designs are available on request

Technical Details

- Stroke length: 6 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0065_C1
1: Diaphragm rupture sensor

P_SI_0099_SW3

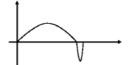
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

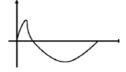
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode (standard), the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines (Version F).

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PV and SS.

Identity code example: S1CbH07042PV ${f F}$ S010S0DE .

Technical Data

Type S3Cb	Delivery rate at max. back pressure		Max. stroke rate	,		Suction Perm. pre- lift pressure suction side		Connection, suction/dis- charge side	Shipping weight	
	bar	l/h	ml/stroke	Strokes/min	psi	gph (US)	m WC	bar	G-DN	kg
120145 PVT	10	182	33.7	90	145	48.0	5	2	1 1/2–25	22
120145 SST	12	182	33.7	90	174	48.0	5	2	1 1/2–25	26
120190 PVT	10	243	33.7	120	145	64.1	5	2	1 1/2–25	22
120190 SST	12	243	33.7	120	174	64.1	5	2	1 1/2–25	26
120270 PVT	10	365	33.8	180	145	96.4	5	2	1 1/2–25	22
120270 SST	12	365	33.8	180	174	96.4	5	2	1 1/2–25	26
070410 PVT	7	500	95.1	90	102	132.0	4	1	2-32-*	24
070410 SST	7	500	95.1	90	102	132.0	4	1	2-32-*	29
070580 PVT	7	670	95.1	120	102	176.9	4	1	2-32-*	24
070580 SST	7	670	95.1	120	102	176.9	4	1	2-32-*	29
040830 PVT	4	1,040	95.1	180	58	274.7	3	1	2-32-*	24
040830 SST	4	1,040	95.1	180	58	274.7	3	1	2-32-*	29

^{*} DN32 plate valves with valve spring

Materials in Contact With the Medium

		DN 25 ba	ıll valves		DN 32 pl	late valves		
Material	Suction/pressure connector on dosing head			Valve seats	Seals	Valve plates/ valve springs	Valve seats	Integral relief valve
PVT	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM
SST	Stainless steel 1.4581	PTFE	Stainless steel 1.4404	PTFE**	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/FKM or EPDM

^{*} The valve spring is coated with CTFE (resistance similar to PTFE)

Motor Data

Identity code specification		Power supply		Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz 420 W	

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

^{**} The ball seat is made of PVDF with design "F" $\,$

Sigma/ 3 Control type (S3Cb)

S3Cb	Drive	type													
	Н	Main po	wer er	nd, diap	hragm	ı									
		Pump ty				,									
		100145	bar	I/h		070410	bar	I/h 500							
		120145 120190	12	182 243		070410		670							
		120190	12	365		040830		1,040							
		120270		ng hea	d mat		*	1,040							
			PV			10 bar)		SS	Stain	ess ste	el				
			•	Seal r	•			100	0	000 010					
				T	PTFE				F	FDA-c	omplia	nt (only	with 12	bar ver	sion)
					Displ	acemen	t body	,	Į		•	` _			
					s	Multi-lay			ragm v	with opt	ical rup	ture ind	licator		
					Α	Multi-lay	er safe	ety diaph	ragm v	with ele	ctrical s	ignal			
						Dosing									
						0		lve sprin							1.00)
						1		valve sp	_		-			I for DIN	132)
						2		leed val leed val					-		
						4**		elief valv					•		
						5**		elief valv							
						6**		elief valv					-		
						7**		elief valv					•		
						8	with b	leed val	ve, EP	DM sea	ıl, no va	lve spri	ng		
						9	with b	leed val	ve, EP	DM sea	ıl, with v	alve sp	ring		
							•	aulic co							
							0			nection	•				
							1	Union		PVC I					
							2			PVDF					
							4					el*** inse	art		
							7				tube n		511		
							8	Union	nut and	d stainle	ess stee	el tube n	ozzle		
							9	Union	nut and	d stainle	ess stee	el weldir	ng sleev	е	
								Versio							
								0			ent® Lo	_			
								1			/linent [®]				
											ver sup		00/ 040	. V . O0/	50/00 H= 400 M
									U				0%, 240	V ±6%	s, 50/60 Hz, 420 W
										A	and p			IC	2 m Australia
										В	2 m S			D	2 m USA
											Relay	W100		٦	Z III GOA
											0	No rela	aγ		
											1	Fault in	ndicating	relay	(230 V, 8 A)
											3	Fault in	ndicating	relay ((24 V, 100 mA) + pacing relay (24 V, 100 mA)
											8	0/4-20	mA anal	ogue o	utput + fault indicating / pacing relay (24 V - 100 mA)
													ol versi		
												0			ernal contact with pulse control
												1			ue + metering profiles
												6 7			BUS® DP interface, M 12 pen (CiA 402, M12 plug), pump without operating
												l	unit (H	MI) ****	to the state of th
															itch-off
													0		ut overload switch-off
Langu	. •														ating unit (HMI)
DE	Germa													S	HMI (0.5 m cable)
EN	Englisl													1	HMI + 2 m cable
ES	Spanis													2	HMI + 5 m cable
FR IT	French Italian	1												3 X	HMI + 10 m cable
NL	Dutch							1						^	without operating unit (HMI)
PL	Polish														Access code 0 without access control
PT	Portug														1 with access control
	9														

^{* 10} bar with PVDF version.

Dosing heads with EGEDG certificate in an electro-polished design (<Ra 0.8) or stainless steel dosing heads with seals according to EU regulation 1935/2004 are available on request.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

^{**} Standard with threaded connector in the bypass. Hose nozzle on request

^{***} Internal thread of the insert SS DN25-Rp 1, DN32-Rp 1 1/4

^{****} An HMI order no. 1042549 is required for manual operation, e.g. with the failure of the CAN bus

1.7.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT/ TTT material version:

- 1 diaphragm
- 2 complete valves
- 2 valve balls and/or valve plate with spring for DN 32
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat housings
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls and/or valve plate with spring for DN 32
- 2 ball seat discs
- 4 composite seals

Spare Parts Kits Sigma/ 3 for Design With Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1034678
FM 330 - DN 25	SST		1034679
FM 330 - DN 25	SST	with 2 valves cpl.	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT		1034681
FM 1000 - DN 32	SST		1034682
FM 1000 - DN 32	SST	with 2 valves cpl.	1034683

Spare Parts Kits for Sigma/ 3 for Design With Old Diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1005308
FM 330 - DN 25	SST		1005310
FM 330 - DN 25	SST	with 2 valves cpl.	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT		1020032
FM 1000 - DN 32	SST		1005311
FM 1000 - DN 32	SST	with 2 valves cpl.	1005313

Spare Parts Kit for Sigma/ 3 With FDA Design (Physiologically Safe)

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1046478
FM 330 - DN 25	SST	without valve	1046479
FM 330 - DN 25	SST	with valve	1046480

Motor-Driven Metering Pumps

Motor-Driven Metering Pump Sigma/ 3 (Control Type)

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603

Metering Diaphragm (Old Version)

	Order no.
FM 330 Identity code: Type 120145, 1201	90, 120270, 120330 1004604
FM 1000 Identity code: Type 070410, 070	580, 040830, 041030 1002835

Spare Parts Kit for Integrated Relief Valve (S3Ca, S3Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A O-rings each

	For material	Seals	Order no.
Spare parts kit for relief valve 4 bar	PVT/SST	FKM-A/EPDM	1031204
Spare parts kit for relief valve 7 bar	PVT/SST	FKM-A/EPDM	1031205
Spare parts kits for integrated relief valve 10 bar	PVT	FKM-A/EPDM	1031201
Spare parts kits for integrated relief valve 12 bar	SST	FKM-A/EPDM	1031202

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare Parts Kits for Integrated Bleed Valve (S3Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	Pump type	For material	Seals	Order no.
ETS	120145, 120190, 120270	PVT/SST	FKM-A/EPDM	1043785
ETS	070410, 070580, 040830	PVT/SST	FKM-A/EPDM	1043786

Protective Cowling for Operating Unit (HMI)

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall Bracket for Operating Unit (HMI)

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383

Accessories of CANopen operation

An operating unit is needed for the manual operation of a CANopen pump.

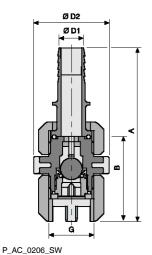
	Order no.
Operating unit (HMI)	1042549

Accessories

- Foot Valves See page → 1-46
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-75
- Suction Lances/Suction Assemblies See page → 1-64

Spare Parts

■ Custom Accessories See page → 1-89



1.8.1

Foot Valves for Motor-Driven Metering Pumps

For connection to the end of the suction line, used as a vacuum breaker and for protection of the pump against contamination. With filter meshes and ball check. Materials used as in the pump liquid ends. Union nuts and inserts/tube nozzles are included in the scope of supply with DN 10 and DN 15 foot valve sizes.

Important: Foot valves are not suitable as absolutely leak-tight shut-off devices.

PPE Foot Valve

Housing made of PP, seals made of EPDM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	59	40	101	16	809465
DN 15	1	66	47	142	20	924516
DN 20	1 1/4	77	55	-	_	803721
DN 25	1 1/2	84	60	-	-	803722
DN 32*	2	98	74	-	_	1006434
DN 40	2 1/4	113	90	-	-	1004204

^{*} PVDF/Teflon version

PCB Foot Valve

Housing made of PP, seals made of FKM, with filter meshes and ball check (glass).

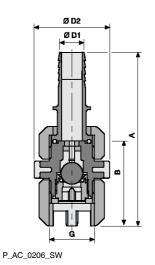
DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809464	
DN 15	1	66	47	142	20	924515	
DN 20	1 1/4	77	55	_	_	803723	
DN 25	1 1/2	84	60	-	-	803724	
DN 32*	2	98	74	_	-	1006434	
DN 40*	2 1/4	108	83	-	-	1029475	

^{*} PVDF/Teflon version

PVT Foot Valve


Housing made of PVDF, ball seat made of PTFE + 25% carbon, PTFE seals, with filter meshes and non-return valve (ceramic).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	58	36	92	16	1029471	
DN 15	1	64	48	131	20	1029472	
DN 20	1 1/4	78	58	-	-	1029473	
DN 25	1 1/2	81	65	-	-	1029474	
DN 32	2	98	74	-	_	1006434	
DN 40	2 1/4	108	83	-	-	1029475	

Foot valve PVT-FDA

"Physiologically safe (FDA) in respect of wetted materials" design.

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

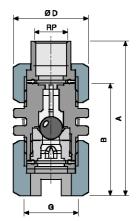
- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Housing made of PVDF, seals made of PTFE, with filter meshes and check ball (ceramic).

DN 10, DN 15 with union nut and hose nozzle

DN 20, DN 25 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	58	36	92	16	1078269	
DN 15	1	64	48	131	20	1078270	
DN 20	1 1/4	78	58	_	-	1078271	
DN 25	1 1/2	81	65	-	-	1078272	


Ø D2 Ø D1

Foot Valve TTT

Housing made of PTFE, seals made of PTFE, with filter meshes and ball check (ceramic).

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

PVDF/Teflon version

P_AC_0204_SW

P_AC_0202_SW

Foot Valve SST

Housing made of SS, PTFE + 25% ball seat, PTFE seals, with filter meshes and ball check (1.4571/1.4581).

DN 10, DN 15 with union nut and insert
DN 20 to DN 40 no connection parts

	G	Α	В	Rp	ØD	Order no.
		mm	mm		mm	
DN 10	3/4	75	56	3/8	37	809467
DN 15	1	83	59	1/2	48	924518
DN 20	1 1/4	_	73	-	55	803727
DN 25	1 1/2	-	82	-	63	803728
DN 32	2	-	92	-	75	1006435
DN 40	2 1/4	-	109	-	90	1004206

P_AC_0204_SW

Foot valve SST-FDA

"Physiologically safe (FDA) in respect of wetted materials" design

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

Material PTFE: FDA No. 21 CFR § 177.1550
 Material PVDF: FDA No. 21 CFR § 177.2510

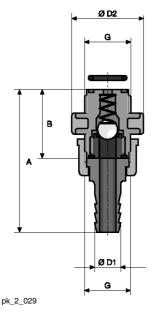
Housing made of SS, PVDF ball seat, PTFE seals, with filter meshes and non-return valve (1/4571/1.4581).

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

	G	Α	В	Rp	Ø D	Order no.	
		mm	mm		mm		
DN 10	3/4	75	56	3/8	37	1078275	
DN 15	1	83	59	1/2	48	1078289	
DN 20	1 1/4	_	73	-	55	1078290	
DN 25	1 1/2	_	82	_	63	1078291	

Foot Valve SST for High-Pressure Metering Pumps

G RP	
	Î
	20
G ØD	


P_AC_0205_SW

	G	В	Rp	ØD	Order no.	
		mm		mm		
DN 10	3/4	70	1/4	41	803730	
DN 10	3/4	70	3/8	41	803731	

1.8.2 Injection Valves for Motor-Driven Metering Pumps

For connecting the metering line to the metering station; metering valves consist of a non-return ball valve and a Hastelloy C spring (0.5 bar pre-pressure) and can be installed in any position. Used for generating pressure and preventing backflow. Materials match those in the pump liquid ends. Metering valve sizes DN 10 and 15 come with the required union nut and insert/hose socket.

Important: Metering valves are not suitable for use as tight-sealing shut-off elements.

PPE Injection Valve

PP housing, EPDM seals with spring-loaded ball check (glass), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar 50 °C - max. operating pressure 9 bar

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	41	40	83	16	809461
DN 15	1	43	47	108	20	924521
DN 20	1 1/4	55	55	_	_	803710
DN 25	1 1/2	60	58	-	-	803711
DN 32*	2	68	70	_	_	1002783
DN 40	2 1/4	85	84	-	-	804761

^{*} PVDF/Teflon version

PCB Injection Valve

 $PVC\ housing, FKM\ seals\ with\ spring-loaded\ ball\ check\ (glass),\ priming\ pressure\ approx.\ 0.5\ bar.$

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 7 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	41	40	83	16	809460	
DN 15	1	43	47	108	20	924520	
DN 20	1 1/4	55	55	-	_	803712	
DN 25	1 1/2	60	58	-	_	803713	
DN 32*	2	68	70	-	_	1002783	
DN 40	2 1/4	85	84	-	-	804760	

^{*} PVDF/Teflon version

Injection valve PVT

PVDF housing, PTFE + 25% carbon ball seat, PTFE seals, with spring-loaded non-return sphere (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar 65 °C - max. operating pressure 10 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	40	36	84	16	1029476	
DN 15	1	43	48	110	20	1029477	
DN 20	1 1/4	55	52	-	_	1029478	
DN 25	1 1/2	61	56	-	_	1029479	
DN 32	2	68	70	-	_	1002783	
DN 40	2 1/4	85	81	-	-	1029480	

"Physiologically safe (FDA) in respect of wetted materials" design.

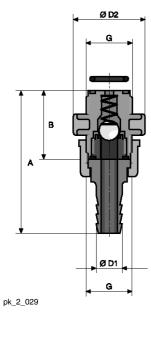
All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

■ Material PTFE: FDA No. 21 CFR § 177.1550 ■ Material PVDF: FDA No. 21 CFR § 177.2510

PVDF housing, PTFE seals, with spring-loaded non-return sphere (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle


DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar

65 °C - max. operating pressure 10 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	40	36	84	16	1078237	
DN 15	1	43	48	110	20	1078238	
DN 20	1 1/4	55	52	-	_	1078239	
DN 25	1 1/2	61	56	-	-	1078240	

g B A A P D D 2 P K 2 0 3 0

TTT Injection Valve

PTFE housing and seals with spring-loaded ball check (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 10 bar 90 °C - max. operating pressure 5 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	38	36	57	16	809462	
DN 15	1	43	48	63	20	924522	
DN 20	1 1/4	55	50	_	_	803714	
DN 25	1 1/2	60	58	_	_	803715	
DN 32*	2	68	70	-	_	1002783	
DN 40	2 1/4	85	84	-	-	804762	

^{*} PVDF/Teflon version

SST Injection Valve

Housing made of stainless steel, PTFE + 25% carbon ball seat, PTFE seals non-return sphere (stainless steel material no. 1.4571 / stainless steel no. 1.4581) spring-loaded, priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

Applications

90 $^{\circ}\text{C}$ - max. operating pressure, see table

	G	Max. pressure	В	Ø D2	Α	Ø D1	Order no.
		bar	mm	mm	mm		
DN 10	3/4	320	38	36	55	3/8	809463
DN 15	1	240	43	48	63	1/2	924523
DN 20	1 1/4	130	55	55	-	-	803716
DN 25	1 1/2	70	60	58	-	-	803717
DN 32	2	45	69	68	-	-	1002801
DN 40	2 1/4	25	85	84	-	-	804763

Injection valve HCT

Hastelloy C housing, Hastelloy C ball seat, PTFE seals, with spring-loaded non-return balls (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert

Applications

90 °C - max. operating pressure, see table

	G	Max. pressure	В	Ø D2	Α	Ø D1	Order no.	
		bar	mm	mm	mm			
DN 10	3/4	100	38	37	59	3/8	1009569	
DN 15	1	100	43	48	66	1/2	1009570	

Injection valve SST - FDA

"Physiologically safe (FDA) in respect of wetted materials" design.

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

Material PTFE: FDA No. 21 CFR § 177.1550 Material PVDF: FDA No. 21 CFR § 177.2510

Housing made of stainless steel, PVDF ball seat, PTFE seals with non-return sphere (stainless steel material no. 1.4571 / stainless steel no. 1.4581) spring-loaded, priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

Applications

90 °C - max. operating pressure, see table

	G	Max. pressure	В	Ø D2	Α	Ø D1	Order no.	
		bar	mm	mm	mm			
DN 10	3/4	320	38	36	55	3/8	1078251	
DN 15	1	240	43	48	63	1/2	1078252	
DN 20	1 1/4	130	55	55	_		1078266	
DN 25	1 1/2	70	60	58	-		1078267	

pk 2 028

P_AC_0275_SW

Injection valve SST for high-pressure metering pumps

To fit metering pumps of the product ranges Sigma, Meta and Makro TZ-HK.

Housing and valve spring made of stainless steel no. 1.4571, ball made of stainless steel no. 1.4401, PTFE seals, priming pressure approx. 0.1 bar.

Applications

90 °C - max. operating pressure, see table

	Max. pressure	G1	G2	ØD	A	Order no.
	bar			mm	mm	
DN 8	320	Rp 1/4	Rp 1/2	42	85	803732
DN 10	190	Rp 3/8	Rp 1/2	42	90	803733

PVDF Metering Valve Adapter

For the installation of injection valves into pipework with straight unions.

The adapter projects into the pipework or storage tanks and can be adjusted (shortened) at different cross-

Direct contact of the chemical to be metered with the wall can be avoided by installation of the adapter. Metering into the centre of the pipework improves, among other things, the mixing through of the metering solution.

Material: PVDF

E2

Applications

25 °C - max. operating pressure 16 bar

65 °C - max. operating pressure 10 bar

E1	E2	Α	В	С	D	Ø D1	Ø D2	Order no.
		mm	mm	m	mm	mm	mm	
Rp 3/4	R 3/4	93	63	49	32	22	15	1022052
Rp 1	R 1	95	65	50	41	27	18	1022053
G 1 1/4	G 1 1/4 A*	150	119	104	50	27	18	1040722
G 1 1/2	G 1 1/2 A*	171	135	118	60	31	20	1040723

D = Width across flats

* In set with 1 x FKM and 1 x EPDM O-ring.

1.8.3 Back Pressure Valves / Relief Valves for Motor-Driven Metering Pumps

Universal back pressure valves of the DHV-U product range are back pressure-free piston diaphragm valves with an internal flow. They are used to generate a constant back pressure and as relief valves. Can be installed at any location in the pipework system.

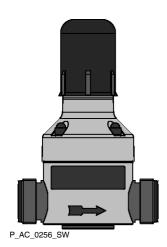
Back pressure valves are used to generate a constant back pressure for precise pumping and to protect against over-metering where there is a free outlet or fluctuating back pressure or when metering into a vacuum. They are also used in conjunction with pulsation dampers to generate low-pulsation metering.

Relief valves are used to protect pumps, pipes and fittings from over pressure, in the event of incorrect operation or blockages in the bypass. In the event of a malfunction, the pump pumps around the circuit or back into the storage tank.

Important: Back pressure valves cannot be used as absolutely leak-tight shut-off devices. Take appropriate safety precautions when handling hazardous media. Relief valves are not safety valves by their definition as per DIN EN ISO 4126-1.

Important: When used as relief valves in conjunction with sticky media (e.g. lime milk), appropriate safety precautions should be taken. (e.g. flushing after a response)

Back Pressure Valve / Relief Valve Type DHV-U


Adjustable pressure 0.5 – 10 bar

Application of PPE/PPB/PCE/PCB:

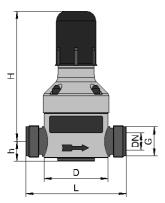
20 °C - max. operating pressure 10 bar

Application of PVT/SST:

30 °C - max. operating pressure 10 bar

Туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1037285
PPB	DN 10	3/4	1038133
PCE	DN 10	3/4	1038144
PCB	DN 10	3/4	1037765
PVT	DN 10	3/4	1037767
SST	DN 10	3/4	1043194
PPE	DN 15	1	1036816
PPB	DN 15	1	1038145
PCE	DN 15	1	1038146
PCB	DN 15	1	1037764
PVT	DN 15	1	1037766
SST	DN 15	1	1043193
PPE	DN 20	1 1/4	1037284
PPB	DN 20	1 1/4	1038147
PCE	DN 20	1 1/4	1038148
PCB	DN 20	1 1/4	1037775
PVT	DN 20	1 1/4	1037777
SST	DN 20	1 1/4	1043192
PPE	DN 25	1 1/2	1036633
PPB	DN 25	1 1/2	1038149
PCE	DN 25	1 1/2	1038150
PCB	DN 25	1 1/2	1037774
PVT	DN 25	1 1/2	1037776
SST	DN 25	1 1/2	1043191
PPE	DN 32	2	1051517
PPB	DN 32	2	1051522
PCE	DN 32	2	1051514
PCB	DN 32	2	1051520
PVT	DN 32	2	1051503
SST	DN 32	2	1051516

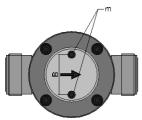
Motor-Driv


Туре	Nominal diameter	G	Order no.
PPE	DN 40	2 1/4	1051518
PPB	DN 40	2 1/4	1051521
PCE	DN 40	2 1/4	1051501
PCB	DN 40	2 1/4	1051519
PVT	DN 40	2 1/4	1051502
SST	DN 40	2 1/4	1051515

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM


Dimensions of DHV-U (PP, PVC, PVDF design)

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	40
15	1	144*	118	24	79	M8	40
20	1 1/4	196*	150	37	99	M8	46
25	1 1/2	196*	150	37	99	M6	46
32	2	252	200	54	139.5	M8	65
40	2 1/4	252	200	54	139.5	M8	65

Approximate values

P_AC_0256_m

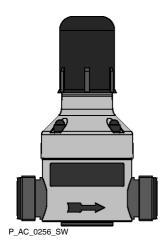
P_MOZ_0005_SW

Dimensions of DHV-U (SS version)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	40
15	1	144*	118	20	79	M6	40
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46
32	2	252	200	37	139.5	M8	65
40	2 1/4	252	200	37	139.5	M8	65

^{*} Approximate values

Back pressure valve/ relief valve type DHV-U design FDA


Adjustable pressure

Application of PPE/PPB/PCE/PCB

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

Application of PVT/SST

30 °C - max. operating pressure 10 bar

Туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1076578
PVT	DN 10	3/4	1076579
SST	DN 10	3/4	1076532
PPE	DN 15	1	1076580
PVT	DN 15	1	1076581
SST	DN 15	1	1076531
PPE	DN 20	1 1/4	1076582
PVT	DN 20	1 1/4	1076583
SST	DN 20	1 1/4	1076597
PPE	DN 25	1 1/2	1076585
PVT	DN 25	1 1/2	1076586
SST	DN 25	1 1/2	1076584
PPE	DN 32	2	1076587
PVT	DN 32	2	1076588
SST	DN 32	2	1076589
PPE	DN 40	2 1/4	1076590
PVT	DN 40	2 1/4	1076591
SST	DN 40	2 1/4	1076592

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the following FDA guidelines:

Material	Guideline
PTFE	21CFR177.1510
PVDF	21CFR177.2510
PP	21CFR177.1520
EPDM/FKM	21CFR177.2600

Materials

Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM

Dimensions of DHV-U (FDA) (PP, PVC, PVDF design)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	40
15	1	144*	118	24	79	M6	40
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46
32	2	252*	200	54	139.5	M8	65
40	2 1/4	252*	200	54	139.5	M8	65

Approximate values

P_AC_0256_m

P_MOZ_0005_SW

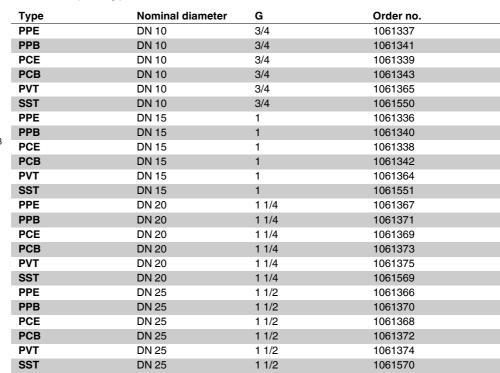
Dimensions of DHV-U (FDA) (SS design)

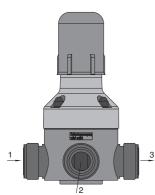
DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	40
15	1	144*	118	20	79	M6	40
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46
32	2	252*	200	37	139.5	M8	65
40	2 1/4	252*	200	37	139.5	M8	65

Approximate values

Relief valve type DHV-UR

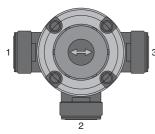
The universal relief valves type DHV-UR are, like all valves in the DHV-U product range, are continuously adjustable plunger diaphragm valves with an internal flow. In the event of impermissible overpressure, the internal plunger diaphragm opens the second output power, the bleeder output. Can be installed at any location in the pipework system. Very low pressure losses when the relief valve is closed owing to its virtually free pipe cross-section Simple spare parts management, the wear parts (pressure spring, diaphragms, plunger seal, connector set seal) correspond to the DHV-U valve product range.

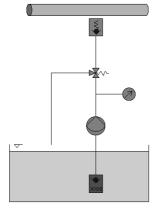

Adjustable pressure 0.5 – 10 bar


Application of PPE/PPB/PCE/PCB

20 °C - max. operating pressure 10 bar

Application of PVT/SST


30 °C - max. operating pressure 10 bar


P AC 0267

- 1 Input
- 2 Bleeder output
- 3 Output

P_AC_0268

- 1 Input
- 2 Bleeder output
- 3 Output

AP_0003

Materials used

Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

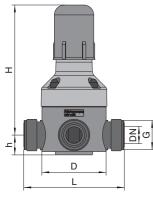
^{*} Cover ring made of PTFE/FKM

G

3/4

1 1/4

Dimensions of DHV-UR (PP, PVC, PVDF design)


mm

144*

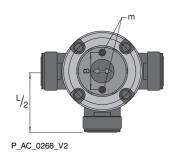
144*

196*

196*

25 1 1/2

DN


10

15

20

Approximate values

P_AC_0267_V2

Approximate values

Dimensions of DHV-UR (SS design)

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	35
15	1	144*	118	20	79	M6	35
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46

mm

118

118

150

150

mm

24

24

37

37

D

 $\mathbf{m}\mathbf{m}$

79

79

99

99

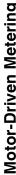
В

mm

35

35

46


46

M6

M6

M6

M6

В

mm

35

35

46

Hydraulic/Mechanical Accessories

Relief valve type DHV-UR, FDA design

Adjustable pressure

Application of PPE/PPB/PCE/PCB

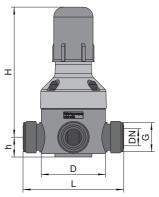
20 °C - max. operating pressure 10 bar

Application of PVT/SST

30 °C - max. operating pressure 10 bar

Туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1075828
PVT	DN 10	3/4	1075830
SST	DN 10	3/4	1075847
PPE	DN 15	1	1075827
PVT	DN 15	1	1075829
SST	DN 15	1	1075846
PPE	DN 20	1 1/4	1075833
PVT	DN 20	1 1/4	1075845
SST	DN 20	1 1/4	1075849
PPE	DN 25	1 1/2	1075832
PVT	DN 25	1 1/2	1075844
SST	DN 25	1 1/2	1075848

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the following FDA guidelines:


Material	Guideline
PTFE	21CFR177.1510
PVDF	21CFR177.2510
PP	21CFR177.1520
EPDM/FKM	21CFR177.2600

Materials used

Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM

Dimensions of DHV-UR (FDA) (PP, PVC, PVDF design)

P AC 0267

P_AC_0268_V3

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	35
15	1	144*	118	24	79	M6	35
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46

mm

118

118

150

150

h

mm

20

20

30

30

D

mm

79

79

99

99

m

M6

M6

M6

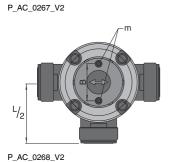
M6

G

3/4

1 1/4

1 1/2


DN

10

15

20

25

*	Approximate	values

1.1.2018

mm

144*

144*

196*

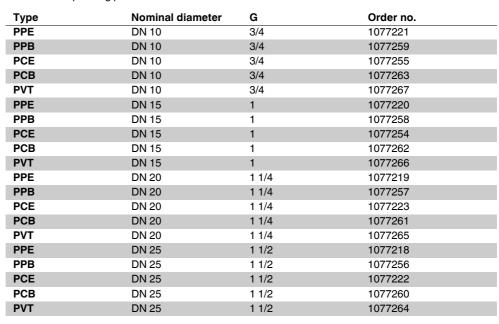
196*

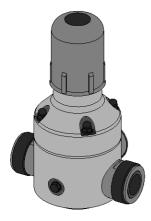
Dimensions of DHV-UR (FDA) (SS design)

Approximate values

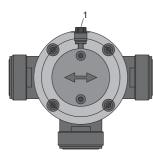
Relief valve type DHV-UR M configured for manometer

The relief valves DHV-UR with M designs are configured with a plug for manometer installation. Manometer with threaded socket G 1/4" (ISO 228) can be fitted by the customer directly to the relief valve via the additional housing opening. Standard manometers with part number are available for neutral media. This also enables savings in terms of installation.


Adjustable pressure 0.5 – 10 ba


Application of PPE/PPB/PCE/PCB:

20 °C - max. operating pressure 10 bar


Application of PVT/SST:

30 °C - max. operating pressure 10 bar

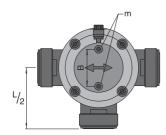
P_AC_0272

P_AC_0271_V2 1: Plug for manometer installation

Materials used

Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM

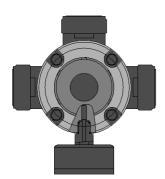
^{*} Cover ring made of PTFE/FKM


O N

Dimensions of DHV-UR M (PP, PVC, PVDF design)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	35
15	1	144*	118	24	79	M6	35
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46

Approximate values


P_AC_0267_V2

P_AC_0271_V2

Pipe spring manometer

Pipe spring manometers in accordance with DIN EN 837-1 for neutral media for use with relief valves DHV-UR design M. When ordered, the manometer is supplied with the relief valve.

P_AC_0269

Nominal diameter 63 mm Display range 0 - 16 bar Housing material 1.4571 **Material connector**

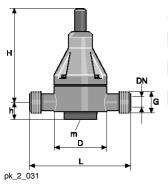
Threaded assembly G 1/4" (ISO 228) Connector

Connector position radial at bottom Filling liquid Glycerine

Pipe spring manometer 792726

Back Pressure Valve / Relief Valve Type DHV 712-R

Adjustable pressure


0.5 – 10 ba

Applications of PPE / PCB

20 °C - max. operating pressure 10 bar

Applications of PVT / TT / SS

30 $^{\circ}\text{C}$ - max. operating pressure 10 bar

Туре	G	Nominal diameter	Order no.
TT	3/4	DN 10	1000059
TT	1	DN 15	1000060
TT	1 1/4	DN 20	1000061
TT	1 1/2	DN 25	1000062
TT	2	DN 32	1000063
π	2 1/4	DN 40	1000064

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

H DN G

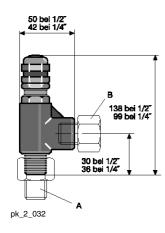
pk_2_031

Dimensions of DHV 712-R

DN	G	Н	L	h	D	m
		mm	mm	mm	mm	
32	2	260	205	59** / 37***	147	M8
40	2 1/4	260	205	59** / 37***	147	M8

^{*=} Approx. values;

Materials


Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
TT	PTFE with carbon	PTFE ²	PTFE ³	PTFE ³

² PTFE (white)

^{** =} PP, PVC, PVDF;

^{*** =} TT, SS

³ Packing ring PTFE/FKM

Back Pressure Valve / Relief Valve for High-Pressure Systems

Use as a pressure relief valve (adjustable) and as a back pressure valve. Overflow valve and corresponding spring must be ordered separately.

Material: stainless steel 316/FKM Temperature range: -18 °C to 120 °C

Recommended Use up to 200 l/h

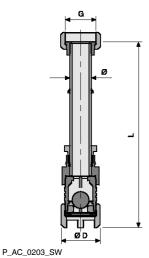
	Connection	Order no.
Overflow valve	1/4" NPT inner and outer thread	202505
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	202519
24.0 – 52 bar	yellow	202520
52.0 – 103 bar	violet	202525
103.0 - 155 bar	orange	202524
155.0 - 207 bar	brown	202523
207.0 - 276 bar	white	202522
276.0 - 345 bar	red	202521

Recommended Use up to 300 l/h

	Connection	Order no.
Overflow valve	1/2" NPT inner and outer thread	1005499
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	1005500
24.0 - 50 bar	yellow	1005501
50.0 - 100 bar	violet	1005502

Reducing Pipe Nipple

Connection	Order no.
1/4" NPT internal – 1/4" NPT external (A)	359378
1/4" NPT external – 1/4 Rp internal (B)	359379
1/2" NPT internal – 1/2" NPT external (A)	1005503
1/2" NPT external – 1/2 Rp internal (B)	1005504


For use as an adjustable safety relief valve and as a back pressure valve. Relief valve and corresponding spring must be ordered separately

1.8.4

Suction Lances, Suction Assemblies and Level Switches for Motor-Driven Metering Pumps

Suction assembly PPE for tanks up to 1,500 litres

Connection G	Storage tank	Ø	ØD	L	Order no.	
	I	mm	mm	mm		
DN 10 3/4	1000	20	47	1,340	790389	
DN 15 1	1000	20	47	1,320	790394	
DN 20 1 1/4	1000	25	55	1,345	790395	
DN 25 1 1/2	1000	32	60	1,315	790396	
DN 32 2	1000	40	74	1,170	1005524	
DN 10 3/4	1500	20	47	1,830	1077554	

Suction assembly without level switch comprising a support pipe, foot valve and threaded connector. The length L of the support pipe can be adjusted (shortened) by the customer.

Note: In applications with a hose, the suction assembly/hose connector kit, consisting of a PVDF screw-in nozzle and a PTFE composite seal, can be used.

Suction assembly PCB for tanks up to 1,500 litres

Connection	G	Storage tank	Ø	ØD	L	Order no.	
		I	mm	mm	mm		
DN 10	3/4	1000	20	47	1,340	790387	
DN 15	1	1000	20	47	1,320	790391	
DN 20	1 1/4	1000	25	55	1,345	790392	
DN 25	1 1/2	1000	32	60	1,315	790393	
DN 32	2	1000	40	74	1,170	1005525	
DN 10	3/4	1500	20	47	1,830	1077555	

Suction assembly without level switch comprising a support pipe, foot valve and threaded connector. The length L of the support pipe can be adjusted (shortened) by the customer.

Note: In applications with a hose, the suction assembly/hose connector kit, consisting of a PVDF screw-in nozzle and a PTFE composite seal, can be used.

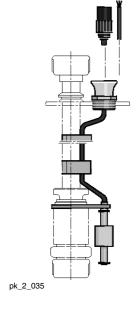
Important: The product contains connections bonded with Tangit. Always note the durability of Tangit

Level Switch Kit Complete, PVDF, Two-Stage with Round Connector or Lead

The level switch kit can be ordered together with the suction fittings DN 10 - DN 32.

For level monitoring in the storage tank, two-phase with pre-alarm signalling and deactivation of the metering pump after a further level decrease of 30 mm.

Max. switching voltage: 100 V
Switching current: 0.5 A
Switching capacity: 5 W/5 VA
Temperature range: - 10 °C to 65 °C


IP rating: IP 67

Switching mode: for level shortage 2 x NC

Material:

Body level switch PVDF, float PE, mounting strap PVDF, cable bracket PE, anti-kink device PE, cable PE.

•		*	•
Connection	Туре	Cable length	Order no.
		m	
DN10/15	with 3-pin round plug	3	1034879
DN 20	with 3-pin round plug	3	1034880
DN 25	with 3-pin round plug	3	1034881
DN 32	with 3-pin round plug	3	1034882
DN 10/DN 15	with lead	5	1034883
DN 20	with lead	5	1034884
DN 25	with lead	5	1034885
DN 32	with lead	5	1034886

P_AC_0252_SW

- A Overall length
- B Immersion depth
- C Diameter of the immersion tube
- D Threaded connector adjustment range
- E Warning level adjustment range
- F Switch-off level adjustment range

PPE Universal Suction Lance

Universal suction lance made of PP in 4 sizes for use in canisters, barrels or containers. The suction lance is configured as standard with return, ventilation function and 2-stage level monitoring. The height-adjustable level switch and tank threaded connectors ensure flexible adaptation to the process or storage tank height. In addition, the suction tube length can easily be shortened by the customer. A PTFE check ball is incorporated and prevents the suction line from running dry. With IBC container suction lances (1039399, 1046672), the screw lid DN150 can be installed by the customer onto other G2" vent openings.

Note: Special designs are available on request.

The suction lance is supplied with all additional parts in cardboard packaging.

Material version: PP with EPDM seals.

Suction connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, DN 20, DN 25 (not for canisters) plus FKM seal do not form part of the scope of delivery.

Return connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, plus an FKM blanking plug and seal do not form part of the scope of delivery.

Level: In drum and tank lances the level switches are protected by tube pieces. The lance level output is in the form of an M12 plug. Please order the level signal cable for connection to ProMinent metering pumps or a PLC or terminal box separately.

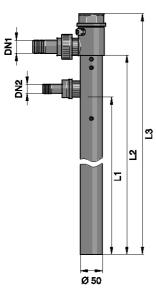
Storage tank connector:

20 l and 20 - 60 l canisters: Ø 50 screw lid 200 l drum: 70 x 6 opening in plastic bung drum

IBC container: DN150 IBC cap

General Electrical Accessories → 1-84

Universal suction lance	Α	В	С	Total adjustment range			Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For canister 20 I	542	405	41	100	250	200	1039206
For canister 20 -60 I	584	447	41	100	300	200	1038817
For drum 200 I	1,072	935	51	50	700	700	1039397
For container IBC	1,162	1,025	51	50	800	800	1039399


PPE Universal Suction Lance, "Physiologically Safe" Design

The universal suction lance is also available as a "Physiologically safe (FDA) in respect of wetted materials" design.

Universal suction lance	A	В	С	Total adjustment range		range	Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For 20-litre canister	542	405	41	100	250	200	1046668
For 20 – 60-litre canister	584	447	41	100	300	200	1046670
For 200-litre drum	1,072	935	51	50	700	700	1046671
for IBC containers*	1,162	1,025	51	50	800	800	1046672

^{*}Replace the screw lid when using FDA containers.

P_AC_0277

Suction Lance with Two-Stage Level Switch

Suction lance with 2-stage level switch in \emptyset 50 PVC protection tube with check valve for DN 10-DN 25, clack valve in DN 32 (valve is not removable).

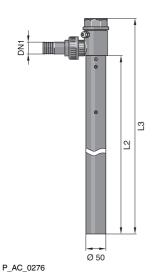
For sizes DN 10/15 and DN 20/25, the connection parts in both sizes and a blanking plate for the return form part of the scope of supply. For the DN 32 suction lance a return line is not possible. Drum suction lances are equipped with a drum lid.

2-stage level switch is wired to a terminal in the head.

The level sensor cable must be ordered separately.

Special designs (materials, functions, Dytex adhesive etc.) are available on request.

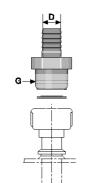
Reed cable with 3-pin round plug, PE → 1-84


* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction Lance for 200/600 I Drum

Туре	Suction connector DN 1	Return DN 2	Seals	L1	L2	L3	Order no.
				mm	mm	mm	
PCB	10/15	10/15	FKM	1000	1100	1200	1037748
PCE	10/15	10/15	EPDM	1000	1100	1200	1037749
PCB	20/25	20/25	FKM	1000	1100	1200	1037750
PCE	20/25	20/25	EPDM	1000	1100	1200	1037751
PCB	32	_	FKM		1100	1200	1037752
PCE	32	-	EPDM		1100	1200	1037753

- L1: Length up to return
- L2: Length up to suction connector
- L3: Overall length


Suction Lance for 1000 I Tank

Type	Suction connector DN 1	Return DN 2	Seals	L1	L2	L3	Order no.
				mm	mm	mm	
PCB	10/15	10/15	FKM	1200	1300	1400	1037722
PCE	10/15	10/15	EPDM	1200	1300	1400	1037723
PCB	20/25	20/25	FKM	1200	1300	1400	1037744
PCE	20/25	20/25	EPDM	1200	1300	1400	1037745
PCB	32	_	FKM		1300	1400	1037746
PCE	32	-	EPDM		1300	1400	1037747

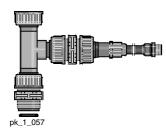
- L1: Length up to return
- L2: Length up to suction connector
- L3: Overall length

Intake Fitting - Hose Connection Kit

Consisting of PVDF threaded socket and a PTFE-formed composite seal. $% \label{eq:pvdf} % \label{eq:pvdf}$

Suitable for PPE Suction assembly for 1,000 I tank \rightarrow 1-64

Connection	G	Material	ØD	Order no.
			mm	
DN 10	3/4	PVDF	16	1029486
DN 15	1	PVDF	20	1029487
DN 20	1 1/4	PVDF	25	1029488
DN 25	1 1/2	PVDF	32	1029489
DN 32	2	PVDF	40	1029490



1-66

pk_2_140

1.8.5

Fittings

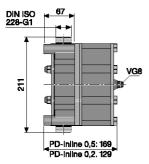
Flushing Assemblies for Motor-Driven Metering Pumps

Flushing assemblies for flushing and cleaning liquid end, metering line and metering valve as well as for preventing deposits.

PPE Flushing Device

Connection	G	Order no.
DN 10	3/4	809917
DN 15	1	809919
DN 20	1 1/4	809921
DN 25	1 1/2	809923

PCB Flushing Assembly


Connection	G	Order no.
DN 10	3/4	809926
DN 15	1	803960
DN 20	1 1/4	803961
DN 25	1 1/2	803962
DN 40	2 1/4	803963

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive. Automatic flushing equipment for the fully automatic flushing of the pump head is possible on request.

1.8.6

Pulsation Damper

PVDF In-Line Pulsation Damper

Function: Hydropneumatic accumulator with baffle

The PVDF accumulator with PTFE diaphragm offers outstanding resistance to chemicals and can therefore be used in connection with a large number of different liquids. The pulsation damper has two liquid connections and can therefore be installed directly in the piping system or be installed diagonally using a blanking plug kit. The baffle in the liquid valve directs the volume flow straight at the diaphragm. This ensures direct contact of the volume flow with the diaphragm. Fluctuations in volume flow are thus optimally balanced out by the enclosed gas volume.

Important: Pulsation dampers should be protected by an overflow valve.

Ø11 158	
pk_2_106_1	

Туре	Volume	Max. pressure	Connection	Order no.
	- 1	bar		
PD In-line	0.2	10	G 1 – DN 15	1026252
PD In-line	0.5	10	G 1 – DN 15	1026736
PD-Inline	0.2	16	G 1 – DN 15	1033446
PD-Inline	0.5	16	G 1 – DN 15	1033447
PD-Inline	0.2	25	G 1 – DN 15	1036154
PD In-line	0.5	25	G 1 – DN 15	1036155

The priming pressure is approximately 0.6 x the operating pressure. Maximum medium temperature, 65 °C. Connection parts must be ordered separately.

Filling of the reservoir with nitrogen takes place via the VG8 gas filling connector or with compressed air using a standard filling valve (e.g. a car tyre valve).

Attention: If using combustible liquids, nitrogen must be used as a filling gas.

Do not use oxygen under any circumstances!

Configuration: DGRL97/23/EC, other acceptances / countries upon request

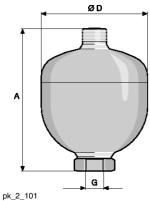
Fluid group: 1 and 2

Certificates: Manufacturer's test certificate M DIN55350-18

Wetted materials - FDA physiologically safe

Manufacturer: HYDAC Technology

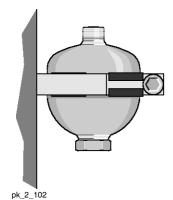
Connection/Adapter Kits


Consisting of PTFE-formed composite seal, insert/adapter and union nut.

Connection PD In- line	Connection Piping	Material	Order no.
G 1 – DN 15	DN 10	PP	1029424
G 1 – DN 15	DN 10	PVC	1029425
G 1 – DN 15	DN 10	PVDF	1029426
G 1 – DN 15	DN 15	PP	1029443
G 1 – DN 15	DN 15	PVC	1029444
G 1 – DN 15	DN 15	PVDF	1029445
G 1 – DN 15	DN 20	PP	1029427
G 1 – DN 15	DN 20	PVC	1029428
G 1 – DN 15	DN 20	PVDF	1029429
G 1 – DN 15	DN 25	PP	1029430
G 1 – DN 15	DN 25	PVC	1029431
G 1 – DN 15	DN 25	PVDF	1029432

Accessories/Spare Parts

Material	Order no.
PVDF/PTFE	1029446
Steel	1029661
PTFE/NBR	1025235
1.4571/FKM/PTFE/MS	1029513
FKM/PTFE/MS	1029514
FKM/PTFE /NIRO	1029515
-	1031556
-	1036156
-	1036157
	PVDF/PTFE Steel PTFE/NBR 1.4571/FKM/PTFE/MS FKM/PTFE /MS FKM/PTFE /NIRO -



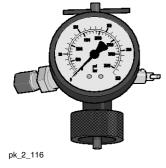
Admissible operating temperature: -10 to +80 °C. Response pressure: 2 bar (nitrogen). Other accumulator/diaphragm materials available on request.

Stainless Steel Pulsation Damper

Volume	Max. pressure	Diaphragm material	Connector G	Α	ØD	Order no.
I	bar			mm	mm	
0.16	180	NBR	Rp 1/2	124	74	1008609
0.16	180	Butyl	Rp 1/2	124	74	1008610
0.16	180	FKM	Rp 1/2	124	74	1008611
0.32	160	NBR	Rp 1/2	137	93	1008612
0.32	160	Butyl	Rp 1/2	137	93	1008613
0.32	160	FKM	Rp 1/2	137	93	1008644
0.75	140	NBR	Rp 1/2	168	121	1008645
0.75	140	Butyl	Rp 1/2	168	121	1008646
0.75	140	FKM	Rp 1/2	168	121	1008647
2.00	100	NBR	Rp 3/4	224	167	1008648
2.00	100	Butyl	Rp 3/4	224	167	1008649
2.00	100	FKM	Rp 3/4	224	167	1008650
4.00	50	NBR	Rp 3/4	360	170	1008651
4.00	50	Butyl	Rp 3/4	360	170	1008652
4.00	50	FKM	Rp 3/4	360	170	1008653
0.75	140	NBR	Rp 1	168	121	1027617
0.75	140	Butyl	Rp 1	168	121	1027618
0.75	140	FKM	Rp 1	168	121	1027619
2.00	100	NBR	Rp 1 1/2	224	167	1027620
2.00	100	Butyl	Rp 1 1/2	224	167	1027621
2.00	100	FKM	Rp 1 1/2	224	167	1027622
4.00	50	NBR	Rp 1 1/2	360	170	1027623
4.00	50	Butyl	Rp 1 1/2	360	170	1027624
4.00	50	FKM	Rp 1 1/2	360	170	1027625

Mounting Clamp for Stainless Steel Pulsation Damper

Volume	Number of Clamps	Ø D	Order no.
I		mm	
0.16	1	74	1008664
0.32	1	93	1008665
0.75	1	121	1008666
2.00	1	167	1008667
4.00	2	170	1008668


Inflation and testing unit for pulsation damper

The inflation and testing unit is used to recharge accumulators with nitrogen and check or alter the existing pre-filling pressure.

It contains:

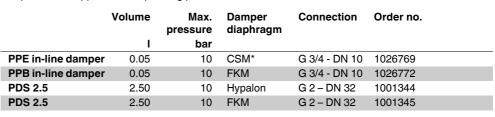
- Checking and filling system with pressure gauge, non-return valve on the inlet, integrated bleed valve, valve stem to open gas inlet valve on accumulator.
- Charging hose, Length 2 m

Adjustment range	Order no.
Up to 25 bar	1008769
Up to 100 bar	1008669
Up to 250 bar	1008670

Pulsation Damper (in-line)

The pulsation damper is used to produce minimal pulsation metering and to reduce flow resistance in long discharge lines.

The gas cushion between the housing and the line is compressed at a pressure stroke of the metering pump, a partial quantity of the medium being simultaneously metered into the metering line. The excess pressure generated in the gas cushion has the effect of allowing the compressed volume to continue to be transported with the following suction stroke and the original, relieved gas volume is restored.

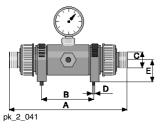

Important notice: The pulsation damper should be used in conjunction with a relief valve.

PP In-Line Damper

Damper diaphragm is replaceable, seals made of EPDM.

Medium temperature max. 50 °C

Pre-pressure is approx. 0.6 x operating pressure.


^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

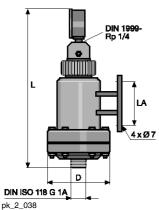
For other sizes (0.2 I and 0.5 I), see PVDF inline pulsation damper.

PVC In-Line Damper

Removable hose, FKM seals.

P_AC_0180_SW

Type	Dimensions							
	Α	В	С	D	E			
PDS 2.5	541	525	G2	11	99.5			


	Volume	Max. pressure	Damper diaphragm	Connection	Order no.
	1	bar			
PCE in-line damper	0.05	10	CSM*	G 3/4 – DN 10	1026775
PCB in-line damper	0.05	10	FKM	G 3/4 – DN 10	1026778
PDS 2.5	2.50	10	Hypalon	G 2 – DN 32	1001342
PDS 2.5	2.50	10	FKM	G 2 – DN 32	1001343

^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

1.8.7

Accumulators

Pulsation dampers with separating bubble for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing the flow resistance in long metering lines and in connection with viscous media. The response pressure of the gas cushion should be approx. 60-80 % of the operating pressure.

Important: When using a pulsation damper, the pressure relief valve should be fitted with an adjustable back pressure valve.

PVC Accumulators

Accumulator removable, FKM seals.

Operating range (0.5 / 1 I)

25 °C - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

Operating range (2.5 / 5 I)

25 °C - max. operating pressure 6 bar

40 °C - max. operating pressure 4 bar

Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 - DN 15	361	145	100	791691
0.5	FKM	G 1 - DN 15	361	145	100	791695
1.0	Butyl	G 1 1/4 - DN 20	411	170	100	791692
1.0	FKM	G 1 1/4 - DN 20	411	170	100	791696
2.5*	Butyl	G 1 1/2 - DN 25	571	170	190	791693
2.5*	FKM	G 1 1/2 - DN 25	571	170	190	791697

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PP Accumulators

Accumulator removable, FKM seals.

Operating range (0.5 / 1 l)

25 °C - max. operating pressure 10 bar

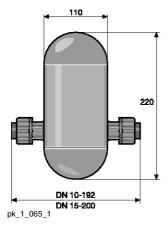
40 $^{\circ}\text{C}$ - max. operating pressure 6 bar

Operating range (2.5 / 5 I)

25 °C - max. operating pressure 6 bar

40 °C - max. operating pressure 4 bar

Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 - DN 15	361	145	100	792128
0.5	FKM	G 1 - DN 15	361	145	100	792132
1.0	Butyl	G 1 1/4 - DN 20	411	170	100	792129
1.0	FKM	G 1 1/4 - DN 20	411	170	100	792133
2.5	Butyl	G 1 1/2 - DN 25	571	170	190	792130
2.5	FKM	G 1 1/2 - DN 25	571	170	190	792134



1.8.8

Accumulators Without Diaphragm

Pulsation dampers with no diaphragm separating the gas cushion and the chemical are used to produce minimal pulsation metering and to reduce flow resistance in long pipes and when metering viscous liquids.

Important: When using accumulators or pulsation dampers it is imperative that a relief valve with an adjustable back pressure valve is fitted.

PP In-Line Pressure Accumulator

Operating range

20 °C - max. operating pressure 10 bar

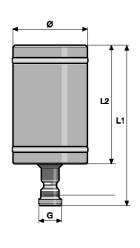
40 °C - max. operating pressure 6 bar

iie	Permissible displacement	Connection	Order no.
1			
1	up to 5 ml	G 3/4 – DN 10	243219
1	up to 5 ml	G 1 – DN 15	243220
	ne 1 1	displacement I up to 5 ml	displacement I 1 up to 5 ml G 3/4 – DN 10

PVC In-Line Accumulator

Operating range

20 °C - max. operating pressure 10 bar


40 °C - max. operating pressure 6 bar

	Volume	Permissible displacement	Connection	Order no.	
	- 1				
Size II	1	up to 5 ml	G 3/4 – DN 10	243204	
Size II	1	up to 5 ml	G 1 – DN 15	243205	

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PP Pressure Accumulator

pk_2_042

Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	290	220	243211
4	G 1 1/2 – DN 25	without connector parts	160	410	320	243212

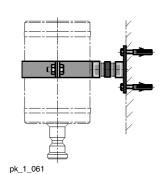
PVC Pressure Accumulator

Operating range

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

40 $^{\circ}\text{C}$ - max. operating pressure 6 bar

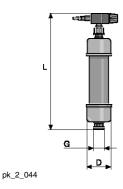
Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	290	220	243207
4	G 1 1/2 – DN 25	without connector parts	160	410	320	243208


^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

L2 L1 pk_2_033

Stainless Steel Accumulator

Max. operating pressure 10 bar


Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	272	222	243214
4	G 1 1/2 – DN 25	without connector parts	160	365	312	243215

Wall Bracket for Accumulator

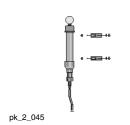
Consists of pipe clamp, mounting plate and connecting nipple.

		Oraci no.
	mm	
For accumulator volume 2 I	110	818502
For accumulator volume 2 I	140	803645
For accumulator volume 4 I	160	803646

PVC Vacuum Cylinder

Vacuum cylinder as priming aid for long suction line and viscous media. Housing – with transparent middle section. With connector for vacuum pump.

Max. operating pressure: 2 bar at 40 °C operating temperature.

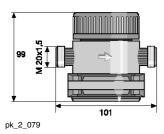

Max. permitted vacuum pressure 300 mbar absolute

With this: Vacuum pump assembly

Volume	Connection	Seal material	L	D	Order no.
I			mm	mm	
0.5	G 1 – DN 15	FKM	380*	78	243591
0.5	G 1 – DN 15	EPDM	380*	78	1025699
1.0	G 1 1/4 – DN 20	FKM	440*	86	243592
1.0	G 1 1/4 – DN 20	EPDM	440*	86	1025701
2.5	G 1 1/2 – DN 25	FKM	520*	133	243593
2.5	G 1 1/2 – DN 25	EPDM	520*	133	1025702
5.0	G 2 1/4 – DN 40	FKM	630*	155	243594
5.0	G 2 1/4 – DN 40	EPDM	630*	155	1025703

^{*} Approximate values

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Vacuum Pump Assembly / Priming Aid

For pulsation dampers, suction side (vacuum cylinder accumulator).

Material Seals	Order no.
PVC EPDM	790019

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction pressure regulator

The suction pressure regulator is a spring-loaded diaphragm valve (max. 50 l/h) which opens as a result of the pump suction pressure. This ensures that chemicals cannot flow when the pump is not running, nor can a vacuum be created as a result of tube rupture.

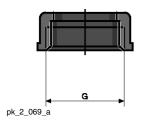
A ball check valve should be fitted to prevent undesirable suction action at the pump outlet (e.g. siphon effect).

An adjustable spring is used to set the maximum required negative pressure for each operating situation up to 400 mbar. For pumps with positive inlet pressure a minimal vacuum of approx. 50 mbar is sufficient. The pump should produce this vacuum in any case, even for an atmospheric pressure inlet.

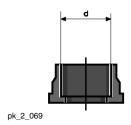
Technical Data

Max. flow rate	50 l/h
Max. feed pressure	4 bar
Max. intake pressure	0.3 bar
Max. temperature	40 °C
Housing material	PVC
Diaphragm material	FKM
Seals	FKM
Ball material	Glass
Spring material	Hastelloy C

Type		Connection	Order no.
SDR 50	For solenoid-driven pumps	M 20 x 1.5	1005505
SDR 50	For motor-driven pumps up to 50 l/h	G 3/4 - DN 10	1005506


Connection parts to be ordered separately.

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


1.8.9 Connectors and Seals for Motor-Driven Metering Pumps

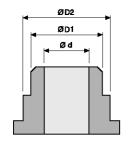
Union Nuts

	Material	Connection	Order no.
Union nut	PP	G 5/8 – DN 8	800665
	PP	G 3/4 – DN 10	358613
	PP	G 1 – DN 15	358614
	PP	G 1 1/4 – DN 20	358615
	PP	G 1 1/2 - DN 25	358616
	PP	G 2 - DN 32	358617
	PP	G 2 1/4 - DN 40	358618
	PP	G 2 3/4 - DN 50	358619
	PVC	G 5/8 – DN 8	800565
	PVC	G 3/4 – DN 10	356562
	PVC	G 1 – DN 15	356563
	PVC	G 1 1/4 – DN 20	356564
	PVC	G 1 1/2 - DN 25	356565
	PVC	G 2 - DN 32	740690
	PVC	G 2 1/4 - DN 40	356567
	PVC	G 2 3/4 - DN 50	356568
	PVDF	G 3/4 – DN 10	358813
	PVDF	G 1 - DN 15	358814
	PVDF	G 1 1/4 - DN 20	358815
	PVDF	G 1 1/2 - DN 25	358816
	PVDF	G 2 - DN 32	1003639
	PVDF	G 2 1/4 - DN 40	358818
	PVDF	G 2 3/4 - DN 50	358819
	1.4571	G 3/4 – DN 10	805270
	1.4571	G 1 - DN 15	805271
	1.4571	G 1 1/4 - DN 20	805272
	1.4571	G 1 1/2 - DN 25	805273
	1.4571	G 2 - DN 32	805274
	1.4571	G 2 1/4 - DN 40	805275
	1.4571	G 2 3/4 - DN 50	805276

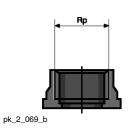
Insert

	Material	Connection	Order no.
Fusion socket	PP	d 12 – DN 8	800666
	PP	d 16 – DN 10	358603
	PP	d 20 – DN 15	358604
	PP	d 25 – DN 20	358605
	PP	d 32 – DN 25	358606
	PP	d 40 – DN 32	358607
	PP	d 50 – DN 40	358608
	PP	d 63 – DN 50	358609
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	358805
	PVDF	d 32 – DN 25	358806
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	358808
	PVDF	d 63 – DN 50	358809

	Material	Connection	Order no.
Fusion coupler, grooved*	PP	d 16 – DN 10	1001785
	PP	d 20 – DN 15	1001395
	PP	d 25 – DN 20	1036258
	PP	d 32 – DN 25	1001787
	PP	d 40 – DN 32	1005105
	PP	d 50 – DN 40	1025960
	PP	d 63 – DN 50	1019207
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	1036259
	PVDF	d 32 – DN 25	1001788
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	1025959
	PVDF	d 63 – DN 50	1019208

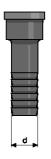

^{*} To be used together with ProMinent® PTFE formed composite seals.

	Material	Ø D1	Ø D2	Connection	Order no.
		mm	mm		
SS fusion coupler, grooved	1.4404	15.0	19.5	d 12 – DN 10	1006011
	1.4404	21.0	25.6	d 16 – DN 15	1006001
	1.4404	26.7	33.6	d 22 – DN 20	1031457
	1.4404	33.4	39.6	d 28 – DN 25	1031458
	1.4404	42.2	49.6	d 36 – DN 32	1031459
	1.4404	48.3	57.5	d 40 – DN 40	1023643
	1.4404	71.6	60.3	d 54 – DN 50	1031460


	Material	Connection	Order no.	
Adhesive socket	PVC	d 16 – DN 10	356572	
	PVC	d 20 – DN 15	356573	
	PVC	d 25 – DN 20	356574	
	PVC	d 32 – DN 25	356575	
	PVC	d 40 – DN 32	356576	
	PVC	d 50 – DN 40	356577	
	PVC	d 63 – DN 50	356578	

	Material	Connection	Order no.
Adhesive coupler, grooved*	PVC	d 16 – DN 10	1001784
	PVC	d 20 – DN 15	1001394
	PVC	d 25 – DN 20	1036257
	PVC	d 32 – DN 25	1001786
	PVC	d 40 – DN 32	1005104
	PVC	d 50 – DN 40	1025961
	PVC	d 63 – DN 50	1019206

^{*} To be used together with ProMinent® PTFE formed composite seals.



P_AC_0210_SW

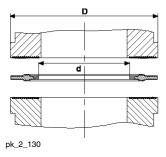
Material	Connection	Order no.
1.4404	Rp 3/8 – DN 10	805285
1.4404	Rp 1/2 – DN 15	805286
1.4404	Rp 3/4 – DN 20	805287
1.4404	Rp 1 – DN 25	805288
1.4404	Rp 1 1/4 – DN 32	805289
1.4404	Rp 1 1/2 – DN 40	805290
1.4404	Rp 2 – DN 50	805291
	1.4404 1.4404 1.4404 1.4404 1.4404	1.4404 Rp 3/8 – DN 10 1.4404 Rp 1/2 – DN 15 1.4404 Rp 3/4 – DN 20 1.4404 Rp 1 – DN 25 1.4404 Rp 1 1/4 – DN 32 1.4404 Rp 1 1/2 – DN 40

Pressure Hose Nozzles

pk_2_046

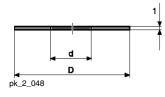
	Material	Connection	Order no.
Pressure hose nozzle	PP	d 16 – DN 10	800657
	PP	d 20 – DN 15	800655
	PP	d 25 – DN 20	800656
	PP	d 32 – DN 25	811418
	PVC	d 16 – DN 10	800554
	PVC	d 20 – DN 15	811407
	PVC	d 25 – DN 20	811408
	PVC	d 32 – DN 25	811409
	PTFE	d 16 – DN 10	811572
	PTFE	d 20 – DN 15	811424
	PTFE	d 25 – DN 20	811425
	PTFE	d 32 – DN 25	811426
	PVDF	d 40 – DN 32	1005106
	1.4571	d 16 – DN 10	810536
	1.4571	d 20 – DN 15	810567
	1.4571	d 25 – DN 20	810568
	1.4571	d 32 – DN 25	810569
	1.4571	d 40 – DN 32	1005360

	Material	Connection	Order no.
Hose nozzle, grooved	PVDF	d 16 – DN 10	1002288
	PVDF	d 20 – DN 15	740632
	PVDF	d 25 – DN 20	1006014
	PVDF	d 32 – DN 25	1005560
	PVDF	d 40 – DN 32	1005106


To be used together with ProMinent ${}^{\tiny\textcircled{\tiny{\textbf{0}}}}$ PTFE formed composite seals.

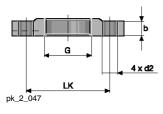
Stainless Steel Threaded Clip

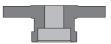
For connecting intake and metering line to pressure hose nozzle.


	Clamping range	Order no.
	mm	
DN 10 clamping ring	16 – 25	359703
DN 15 clamping ring	20 – 32	359705
DN 20 clamping ring	25 – 40	359706
DN 25 clamping ring	32 – 50	359707
DN 32 clamping ring	40 – 60	1002777

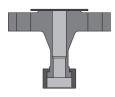
PTFE Formed Composite Seals

Formed composite seals to be used on grooved sealing surfaces (e.g. pump valve and grooved inserts from ProMinent).


DN	Material	D	d	Order no.	
DIN / ANSI		mm	mm		
DN 10	PTFE	23.8	14.0	1019364	
DN 15	PTFE	29.5	18.0	1019365	
DN 20	PTFE	38.0	22.6	1019366	
DN 25	PTFE	44.0	27.6	1019367	
DN 32	PTFE	56.0	34.6	1019353	
DN 40	PTFE	62.0	40.6	1019368	



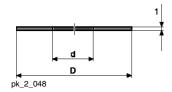
Set of elastomer flat packing seals


Comprising two EPDM and two FKM seals. An elastomer flat seal should be used with non-grooved sealing surfaces. Leaks may occur at the connection if a PTFE shaped composite seal is used.

	D	d	Order no.
	mm	mm	
DN 10	23.5	14.0	1024159
DN 15	29.5	18.0	1024160
DN 20	38.0	22.6	1036254
DN 25	44.0	28.0	1024161
DN 32	56.0	36.0	1024162
DN 40	62.0	41.0	1029508

P_AC_0263_1_SW1 PVDF with collar

P_AC_0264_SW1 1.4571/1.4404 with collar


Flange Mountings

Flange connection in line with DIN 2566 for ProMinent® valve sizes.

PVDF - G 3/4 - DN 10 PN 16 12.4 60 14 1036274 PVDF - G 1 - DN 15 PN 16 13.0 65 14 1036275 PVDF - G 1 1/4 - DN 20 PN 16 15.0 75 14 1036276 PVDF - G 1 1/2 - DN 25 PN 16 16.0 85 14 1036277 PVDF - G 2 - DN 32 PN 16 18.0 100 18 1036278 PVDF - G 2 1/4 - DN 40 PN 16 20.0 100 18 1039037 1.4404 - G 3/4 - DN 15 PN 40 12.0 65 14 803946 1.4404 - G 1 1/4 - DN 20 PN 40 12.0 65 14 803940 1.4404 - G 1 1/2 - DN 25 PN 40 15.0 75 14 803941 1.4404 - G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 <td< th=""><th>Materia</th><th></th><th>G/DN</th><th>Pressure rating</th><th>b</th><th>Ø LK</th><th>d2</th><th>Order no.</th></td<>	Materia		G/DN	Pressure rating	b	Ø LK	d2	Order no.
PVDF G1 - DN 15 PN 16 13.0 65 14 1036275 PVDF G 1 1/4 - DN 20 PN 16 15.0 75 14 1036276 PVDF G 1 1/2 - DN 25 PN 16 16.0 85 14 1036277 PVDF G 2 1/4 - DN 32 PN 16 18.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 40 12.0 65 14 8039037 1.4404 G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 G 1 1/2 - DN 25 PN 40 15.0 75 14 803941 1.4404 G 2 - DN 32 PN 40 15.0 85 14 803942 1.4404 G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404<	•		DIN / ANSI	•	mm	mm	mm	
PVDF G 1 1/4 - DN 20 PN 16 15.0 75 14 1036276 PVDF G 1 1/2 - DN 25 PN 16 16.0 85 14 1036277 PVDF G 2 - DN 32 PN 16 18.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1036278 PVDF G 2 1/4 - DN 15 PN 40 12.0 65 14 803946 1.4404 G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 G 1 1/2 - DN 25 PN 40 15.0 75 14 803941 1.4404 G 2 - DN 32 PN 40 15.0 85 14 803942 1.4404 G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 G 2 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4	PVDF	_	G 3/4 - DN 10	PN 16	12.4	60	14	1036274
PVDF G 1 1/2 - DN 25 PN 16 16.0 85 14 1036277 PVDF G 2 - DN 32 PN 16 18.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1039037 1.4404 G 3/4 - DN 15 PN 40 12.0 65 14 803946 1.4404 G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 G 1 1/2 - DN 20 PN 40 15.0 75 14 803941 1.4404 G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700	PVDF	_	G 1 - DN 15	PN 16	13.0	65	14	1036275
PVDF G 2 - DN 32 PN 16 18.0 100 18 1036278 PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1039037 1.4404 G 3/4 - DN 15 PN 40 12.0 65 14 803946 1.4404 G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 G 1 1/2 - DN 20 PN 40 15.0 75 14 803941 1.4404 G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 15 PN 16 13.5 65 14 1036280	PVDF	_	G 1 1/4 - DN 20	PN 16	15.0	75	14	1036276
PVDF G 2 1/4 - DN 40 PN 16 20.0 100 18 1039037 1.4404 G 3/4 - DN 15 PN 40 12.0 65 14 803946 1.4404 G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 G 1 1/4 - DN 20 PN 40 15.0 75 14 803941 1.4404 G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 18.0 100	PVDF	-	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036277
1.4404 — G 3/4 - DN 15 PN 40 12.0 65 14 803946 1.4404 — G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 — G 1 1/2 - DN 20 PN 40 15.0 75 14 803941 1.4404 — G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 — G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 — G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 3/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100	PVDF	_	G 2 - DN 32	PN 16	18.0	100	18	1036278
1.4404 — G 1 - DN 15 PN 40 12.0 65 14 803940 1.4404 — G 1 1/4 - DN 20 PN 40 15.0 75 14 803941 1.4404 — G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 — G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 — G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.	PVDF	-	G 2 1/4 - DN 40	PN 16	20.0	100	18	1039037
1.4404 — G 1 1/4 - DN 20 PN 40 15.0 75 14 803941 1.4404 — G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 — G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 — G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 18.0 100 18 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40	1.4404	_	G 3/4 - DN 15	PN 40	12.0	65	14	803946
1.4404 — G 1 1/2 - DN 25 PN 40 15.0 85 14 803942 1.4404 — G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 — G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006006 1.4571 with collar* G 1 - DN 15 (DIN 2637)	1.4404	-	G 1 - DN 15	PN 40	12.0	65	14	803940
1.4404 — G 2 - DN 32 PN 40 18.0 100 18 1036283 1.4404 — G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006006 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 -	1.4404	_	G 1 1/4 - DN 20	PN 40	15.0	75	14	803941
1.4404 — G 2 1/4 - DN 40 PN 40 20.0 110 18 803943 1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	1.4404	-	G 1 1/2 - DN 25	PN 40	15.0	85	14	803942
1.4404 — G 2 3/4 - DN 50 PN 40 25.0 125 18 1020453 1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006006 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	1.4404	_	G 2 - DN 32	PN 40	18.0	100	18	1036283
1.4404 — G 2 1/2 - DN 65 PN 40 20.0 145 18 1010700 PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	1.4404	_	G 2 1/4 - DN 40	PN 40	20.0	110	18	803943
PVDF with collar* G 3/4 - DN 10 PN 16 12.5 60 14 1036279 PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	1.4404	_	G 2 3/4 - DN 50	PN 40	25.0	125	18	1020453
PVDF with collar* G 1 - DN 15 PN 16 13.5 65 14 1036280 PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	1.4404	_	G 2 1/2 - DN 65	PN 40	20.0	145	18	1010700
PVDF with collar* G 1 1/2 - DN 25 PN 16 16.0 85 14 1036281 PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	PVDF	with collar*	G 3/4 - DN 10	PN 16	12.5	60	14	1036279
PVDF with collar* G 2 - DN 32 PN 16 18.0 100 18 1036282 1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	PVDF	with collar*	G 1 - DN 15	PN 16	13.5	65	14	1036280
1.4571 with collar* G 3/4 - DN 10 (DIN 2637) PN 100 20.0 70 14 1006005 1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	PVDF	with collar*	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036281
1.4571 with collar* G 1 - DN 15 (DIN 2637) PN 40 16.0 65 14 1006006 1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	PVDF	with collar*	G 2 - DN 32	PN 16	18.0	100	18	1036282
1.4404 with collar* G 1 1/2 - DN 25 (DIN 1092-1) PN 40 18.0 85 14 1041796	1.4571	with collar*	G 3/4 - DN 10 (DIN 2637)	PN 100	20.0	70	14	1006005
,	1.4571	with collar*	G 1 - DN 15 (DIN 2637)	PN 40	16.0	65	14	1006006
	1.4404	with collar*	G 1 1/2 - DN 25 (DIN 1092-1)	PN 40	18.0	85	14	1041796
1.4404 with collar* G 2 - DN 32 (DIN 1092-1) PN 40 18.0 100 18 1041797	1.4404	with collar*	G 2 - DN 32 (DIN 1092-1)	PN 40	18.0	100	18	1041797

Use flange mountings with a collar for pumps Sigma/ 1, Sigma/ 2 with DN 15 connector and Sigma/ 3 pumps with DN 25 connector. Sigma/ 3-DN25 1" EN 1092-11.4404 part no: 1041796

Further material versions and details available on request.

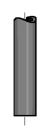

Flat Seals for Threaded Flange to DIN 2566

Material	G/DN	D	d	Order no.
	DIN / ANSI	mm	mm	
PTFE	G 3/4 - DN 15	52	12	483938
PTFE	G 1 - DN 15	52	17	483924
PTFE	G 1 1/4 - DN 20	62	22	483925
PTFE	G 1 1/2 - DN 25	72	27	483926
PTFE	G 2 - DN 32	83	33	1007541
PTFE	G 2 1/4 - DN 40	92	40	483928
PTFE	G 2 3/4 - DN 50	108	50	483929
PTFE	G 3 - DN 65	130	60	1020466
FKM	G 3/4 - DN 15	52	12	483939
FKM	G 1 - DN 15	52	17	483942

Material	G/DN	D	d	Order no.
	DIN / ANSI	mm	mm	
FKM	G 1 1/4 - DN 20	62	22	483943
FKM	G 1 1/2 - DN 25	72	27	483944
FKM	G 1 1/2 - DN 32	83	33	1007542
FKM	G 2 1/4 - DN 40	92	40	483946
FKM	G 2 3/4 - DN 50	108	50	483947
FKM	G 3 - DN 65	130	60	1020467

Flange mountings as DIN 2629. To order for Meta HK and Makro TZ HK plunger metering pumps.

FKM = Fluorine Rubber


Straight Male Adapter Stainless Steel

Swagelock system, stainless steel SS 316 (1.4401) for connection of pipework to liquid end and valves with internal thread and for SB version.

	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
12 mm - ISO 7 R 3/8	359520
16 mm - ISO 7 R 3/8	359521

pk_1_028

pk_1_013

Soft PVC Suction Line

For metering pumps and accessories. We recommend that only original tubing is used so that the mechanical connection of the compression fitting and the pressure rating and chemical resistance are

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
PVC flexible	19 x 15	for DN 10	0.5*	037020
Flexible PVC	22 x 18	for DN 15	0.5*	037022

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Caution:

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

* Permissible operating pressure at 20 °C, chemical resistance and proper connection assumed.

pk_1_060

Soft PVC Suction and Discharge Line with Woven Fabric Core

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
Soft PVC with woven inner layer	24 x 16	for DN 10	15*	037040
Soft PVC with woven inner layer	27 x 19	for DN 15	15*	037041
Soft PVC with woven inner layer	34 x 25	for DN 20	12*	037043
Soft PVC with woven inner layer	40 x 30	for DN 25	10*	1000527
Soft PVC with woven inner layer	52 x 40	for DN 32	7*	1005508

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Caution:

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

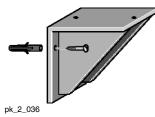
For socket welded and PVC cemented rigid PP and PVDF pipe, pipes and fittings with a pressure rating of PN 16 or PN 10 bar are to be used.

Stainless Steel Pipes

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Stainless steel pipe 1.4435	Sold in metres	6 x 5	175*	015738
	Sold in metres	6 x 4	185*	015739
	Sold in metres	8 x 7	160*	015740
	Sold in metres	12 x 10	200*	015743

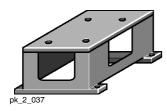
Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Hose Cutting Kit


Hose Cutting Set for Plastic Pipes up to a Diameter of 25 mm. Manufacturer: Gedore.

	Order no.
Hose Cutting Kit	1038571

1.8.10


Metering Pump Wall Mounting Bracket

PP Wall Bracket

PP wall mounting, holds pump parallel to the wall, includes fixings. Measurements: L x W x H, 230 x 220 x 220 mm

		Order no.	
Wall mounting bracket	for Vario, Sigma and Meta	1001906	

PP Foot Bracket

For mounting metering pump, includes fixings. Material PP.

Measurements: L x W x H 250 x 160 x 150 mm

	Order no.
Foot bracket	809910

Motor-Dr

1.9.1

Speed Controllers

Frequency Converters for Speed Control

Integrated control unit with various functions optimally matched to ProMinent metering pumps: Selectable external/internal control, internal/external reset, temperature monitoring and control via PTC sensor, separate motor fan control as well as evaluation of diaphragm rupture monitoring.

Internal control: via potentiometer

External control: 0/4-20 mA corresponding to 0-50 (60) Hz output frequency

Frequency converters can be used in the range of -10 °C to 40 °C.

P_AC_0185_SW Max. motor output kW	For pump type	Voltage supply	Voltage supply, external fan	Control range	Order no.
0.37	Sigma/ 1, Sigma/ 2, Meta, Hydro/ 2, MF1a, DR15	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030684
0.75	Sigma/ 3, Hydro/ 3, MF2a	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030685
1.50	Makro TZ, MF2a, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030686
2.20	Makro TZ, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030687
4.00	MF3a, MF4a	3 ph 380 – 500 V	3 ph 380 V	1:5	1030688

Dimensions and weight

Order no.	В	Н	С	Weight
	mm	mm	mm	kg
1030684	210	240	163	6.3
1030685	210	240	163	6.3
1030686	215	297	192	8.8
1030687	230	340	222	10.7
1030688	230	340	222	10.7

pk_2_103 Variable speed motor with integrated frequency converter

Variable speed motors with integrated frequency converter with IP 55 protection

Externally controllable with 0/4-20 mA (factory setting 4-20 mA)

Voltage supply: 1 ph 230 V, 50/60 Hz (0.37-1.1 kW) Voltage supply: 3 ph 400 V, 50/60 Hz (1.5-3 kW)

The following functions are integrated in the terminal box cover:

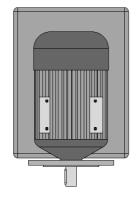
- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode.

Max. motor output	For pump	Control range	Flange Ø	Order no.
kW			mm	
0.37	Hydro/ 2, Meta	1:20	160	1008569
0.75	Hydro/ 3	1:20	160	1008571
1.10	Makro TZ (TZMB)	1:20	160	1008572
1.50	Makro TZ	1:20	160	1008573
2.20	Makro TZ	1:20	200	1008574
3.00	Makro/ 5	1:20	250	1027482

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Motor-Driven Metering Pumps


1.9 Electrical Accessories

Operating unit for setting control parameters

	Order no.
With sub-D connector (old)	1020585
With Western connector (new)	1029493

Note:

Version suitable for use in ambient temperatures up to 55°C available on request.

P_AC_0211_SW

Explosion-protected compact drive with integrated frequency converter Protection class II 2G Eexde II C T4

Voltage supply: 400 V, 50/60 Hz Mains feed: 3 ph + neutral + earth

Model: IM B5

Inputs: 2 x analogue 0/4...20 mA

4 x digital (includes frequency input 0...100 kHz)

Outputs: 2 x analogue 4...20 mA 4 x digital 0/+20 V, 10 mA

1 x frequency output 0...10 kHz, 0/18...24 V, max. 5 mA

Terminal strip connectors: ON/OFF

Self-locking RESET

Winding and temperature monitoring by PTC resistor with integral evaluation.

External control circuit: 230 V with internal fuse.

Note:

Delivery on request

Max. motor output	For pump	Control range	Flange Ø
kW			mm
0.55	Hydro/ 2, Sigma/ 3, Orlita MF	1:10	80
0.75	Hydro/ 3, Orlita MF	1:10	80
1.50	Makro TZ, Orlita MF	1:10	200
2.20	Makro TZ, Orlita MF	1:10	200
4.00	Makro/ 5, Orlita MF	1:10	250

Pumps with compact drive are always delivered on a frame.

Motor data sheets can be requested for more information.

Special motors or special motor flanges and other control ranges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

1.9.2

General Electrical Accessories

Universal signal cable

For control of the metering pump via potential-free contact, analogue standard signal and for potential-free ON/ OFF switching - switch-on function.

For Vario, S1Ca, S2Ca and S3Ca with 5-pin round plug made of plastic and 5-wire cable with open end.

	Cable length	Order no.
	m	
Universal cable	2	1001300
Universal cable	5	1001301
Universal cable	10	1001302

Reed cable with 3-pin round plug, PE

For Sigma metering pumps with 3-pin round plugs and a 3-core cable with an open end for level control. Suitable for Suction lance for motor-driven metering pumps* \rightarrow 1-66

	Cable length	Order no.
	m	
Reed cable with 3-pin round plug, PE	2	1030334
	3	1030335
	5	1030336

P_AC_0243_SW

Level sensor cable for connection of a universal suction lance and a motordriven metering pump

For connection of the level switch of the universal suction lance for Sigma metering pumps or the higherlevel control system (e.g. PLS).

Suitable for PPE universal suction lance for motor-driven metering pumps → 1-65

P_AC_0243_SW

	Cable length	Fig.	Order no.
	m		
Round plug coupling for M12 3-pin round plug	2	pk_1_126	1040962
Round plug coupling for M12 3-pin round plug	5	pk_1_126	1040963
Round plug coupling for M12 open end	1.1	P_AC_0243_SW	1009873
Round plug coupling for M12 open end	5	P_AC_0243_SW	1022537

Extension cable, 3-core

For 2-stage level switches, with round plug and round plug coupling.

	Cable length	Fig.	Order no.	
	m			
Extension cable, 3-core	3	pk_1_126	1005559	

Order no.

1040956

1040955

1036621

1036622

1.9 Electrical Accessories

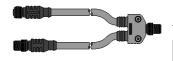
Profibus adaptor, IP 65 protection

Y-adapter 2 x M12 x 1 male/female

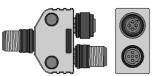
PROFIBUS® termination assembly,

PROFIBUS® termination resistor,

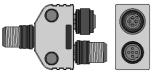
resistance


plug-in

USB adaptor


PROFIBUS® Y-adapter

comprising a Y-plug and terminating


From eurofast 5-pin M12 x 1, length approx. 500 mm.

P AC 0245 SW

P_AC_0230_SW_1

To connect a laptop to gamma and Sigma series metering pumps.

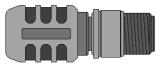
The USB adapter can be used to transfer timer programmes created using ProTime software to the pump. You will find the ProTime software on our home page.

M12 x 1 male

M12

M 12 x 1

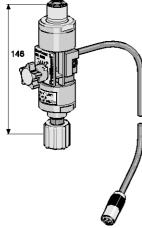
M 12 x 1


Fig.

P_AC_0245_SW

P_AC_0230_SW

P_AC_0239_SW



P_AC_0239_SW

Flow Control adjustable flow monitor

Suitable for product range Sigma/1/2/3 in material versions PVT and SST. Complete with connector cable for assembly directly on the dosing head.

For monitoring the individual strokes based on the floating body principle. The adjustment screw is used to match the partial flow flowing past the float to the set stroke volume so that an alarm is emitted if the level falls significantly below the required level. The permitted number of incompletely performed strokes can be selected between 1-150 on the Sigma Control (S1Cb/S2Cb/S3Cb), ensuring optimum adaptation to process requirements.

pk_1_086_2

Materials

PVDF Flow meter: Float: PTFE-coated Seals: FKM/EPDM

Flow Control	Seal material	For pump	Order no.	
Flow Control DN 10	EPDM	Sigma/ 1	1021168	
Flow Control DN 10	FKM	Sigma/ 1	1021169	
Flow Control DN 15	EPDM	Sigma/ 1/ 2	1021170	
Flow Control DN 15	FKM	Sigma/ 1/ 2	1021171	
Flow Control DN 25	EPDM	Sigma/ 2/ 3	1021164	
Flow Control DN 25	FKM	Sigma/ 2/ 3	1021165	
Flow Control DN 32	EPDM	Sigma/ 3	1021166	
Flow Control DN 32	FKM	Sigma/ 3	1021167	

Flow Meter DulcoFlow® for Sigma/ 1 Product Range

Your reliable control unit: unobtrusively measures, monitors and detects faults.

For the measurement of pulsating volumetric flows within the range of 0.03 ml/stroke to 10 ml/stroke

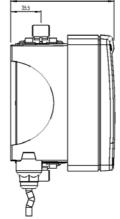
The flow meter DulcoFlow® reliably measures pulsating flows in the range above 0.03 ml/stroke based on the ultrasound measuring principle. The flow meter achieves maximum chemical resistance, as all wetted parts are made of PVDF and PTFE.

The device works on the ultrasound measuring principle. It was developed specifically for measuring small pulsating volumetric flows. It is installed around 30 cm downstream of the metering pump, so that there is still sufficient pulsation in the flow. All liquids that conduct ultrasound waves can be measured.

Your benefits

- Maximum chemical resistance by the use of PVDF and PTFE
- No electrical conductivity of the medium is needed
- Measurement above stroke volumes of approx. 30 μl
- Detection of gas bubbles in the feed chemical
- No bottlenecks in the measuring tube. Media with small undissolved particles or with increased viscosity can be measured
- A 0/4 -20 mA current output and a frequency output are available for remote transmission of the measured values.
- Use as a single stroke monitor with feedback to the pump. This ensures that the metering stroke is performed within an adjustable lower and upper limit
- Summation of the metering volume measured with stroke counter
- Intuitive user guidance and simple programming

Technical Details


- 2 LEDs for status display and stroke feedback
- 2-line graphic display
- 0/4-20 mA standard signal and 0 10 kHz frequency output for remote transmission of the measured value
- Compact, chemically-resistant plastic housing
- Measuring accuracy ± 2 % if the device has been calibrated to the chemical to be measured. Max. operating pressure 16 bar.

Field of application

- Measurement of the chemical consumption, for example in surface treatment.
- Guaranteed metering, for example in the paper industry.
- Measured value transmission and pump control by the central control system.
- Measurement of aggressive chemicals.
- Not suitable for liquids, which have minimal acoustic conductivity, e.g. sodium hydroxide (NaOH) with a concentration of greater than around approx. 20%.
- We recommend first testing the measurability with emulsions and suspensions.
- Media like chlorine dioxide liquids, which can penetrate through PVDF, can lead to shorter lifetime of the transducers.

1000 P

Dimensional drawing of DulcoFlow®

P_DFI_0002_SW1

Technical Data

Туре Type 08 PVDF Measuring tube 16 bar Max. operating pressure

Smallest measurable stroke Approx. 0.05 ml/stroke pulsing

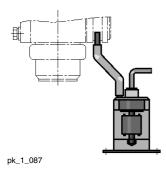
volume

Contact output with Open collector, 1 contact per stroke

individual stroke detection

Frequency output Open collector, up to 10 kHz at maximum flow (parametrisable) **Analogue output** Parametrisable, max. load 400 Ω

for series Beta® 1604 - 0420, gamma/ X 1604 - 0424, delta® 1020 - 0450, Sigma/ 1


Identity code ordering system for DulcoFlow® ultrasound flow meter

DFMa	Type (for pum	ıp serie	ries)						
	08	Beta® ·	1604 – 0	0420, ga	mma/ X	. 1604 – 0424, delta® 1020 – 0450, Sigma/ 1				
		Sealar	t mate	rial						
		E	EPDM							
		V	FKM							
		Т	PTFE							
			Hydra	ulic con	nectio	n				
			1	6/4 mm	1					
			2	8/5 mm	า					
			3	12/9 m	m					
				Electri		nection, cable				
				Α		30 V AC, 2 m European				
				В		230 V AC, 2 m Swiss				
			C 100 - 230 V AC, 2 m Australian							
	D 100 – 230 V AC, 2 m USA					230 V AC, 2 m USA				
					Signal	output				
					0	No output				
					1	Current output				
					2	Contact output				
					3	Current output and contact output				
		4 Current output for delta® with control module								
				Version						
					0 With ProMinent® logo					
				Accessories						
					0 Without accessories					

Matching adapter, hydraulically mechanical accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64

Diaphragm rupture indicator

Triggers alarm and switches off metering pump in the event of diaphragm rupture. Consists of float switch, PVC/PE, acrylic tank, connectors and connecting hose. Potential-free NO contact, max. contact voltage 60 V AC, 300 mA, 18 W.

	For pump	Order no.
Diaphragm rupture indicator	Meta, Makro TZ	803640
Diaphragm rupture indicator	Makro/ 5	1019528

Siren

HUW 55, 230 V, 50 - 60 Hz,

165 x 60 x 65, 85 phon, indoor.

(e.g. in association with fault indicating relay or relay controller)

	Order no.
HUW 55 Horn	705002

pk_1_088

Warning light

Wall mounted, red, 230 V, 50 - 60 Hz.

(e.g. in association with fault indicating relay, pulse generator or relay controller)

	Order no.
Indicator lamp, red	914780

1.10 Special Accessories

1.10.1

Custom Accessories

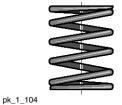
FKM metering diaphragm

As standard diaphragm but made of FKM, and without PTFE coating. Designed specifically for crystallising chemicals, e.g. silicate. Max. operating pressure 6 bar.

For pump type	Order no.
Sigma/ 1 (old diaphragm) 12017, 12035, 10050	1010281
Sigma/ 1 (old diaphragm) 10022, 10044, 07065	1010284
Sigma/ 1 (old diaphragm) 07042, 04084, 04120	1010287
Sigma/ 2 (old diaphragm) 16050, 16090, 16130	1018953
Sigma/ 2 (old diaphragm) 07120, 07220, 04350	1018984
Sigma/ 3 (old diaphragm) 120145, 120190, 120270, 120330	1006564
Sigma/ 3 (old diaphragm) 070410, 070580, 040830, 041030	1006566

Additional custom diaphragms for other pump types are available on request.

FKM = Fluorine Rubber



pk_1_103

Liquid end valve springs

With approx. 0.05-0.1 bar priming pressure for spring loading of the valve balls in the liquid end. Recommended to improve the valve function and to increase metering accuracy, in particular for viscous media above 50 m Pas.

	Order no.
1.4571 valve spring 0.05 bar for 1/4" connector on Meta/Makro TZ HK	469461
1.4571 valve spring 0.05 bar for 3/8" connector on Makro TZ HK	469462
Hastelloy C valve spring 0.1 bar DN 10	469114
Hastelloy C valve spring 0.1 bar DN 15	469107
Hastelloy C valve spring 0.1 bar DN 20	469451
Hastelloy C valve spring 0.1 bar DN 25	469452

Injection valve springs

With approximately 0.5-1 bar priming pressure for increased metering reproducibility and prevention of suction and siphoning effect.

	Order no.
Hastelloy C valve spring 0.5 bar DN 10	469115
Hastelloy C valve spring 1 bar DN 10	469119
Hastelloy C valve spring 0.5 bar DN 15	469108
Hastelloy C valve spring 1 bar DN 15	469116
Hastelloy C valve spring 0.5 bar DN 20	469409
Hastelloy C valve spring 1 bar DN 20	469135
Hastelloy C valve spring 0.5 bar DN 25	469414
Hastelloy C valve spring 1 bar DN 25	469136
Hastelloy C valve spring 0.5 bar DN 40	469104
Hastelloy C valve spring 1 bar DN 40	469137
Valve spring Hast. C 0.5 bar DN 32	1002799
Valve spring Hast. C 1 bar DN 32	1002805

Injection valve spring with FEP coating

	Order no.
Hastelloy C/FEP valve spring 0.5 bar for DN 10	818515
Hastelloy C/FEP valve spring 0.5 bar for DN 15	818516
Hastelloy C/PVDF valve spring 0.5 bar for DN 20	818517
Hastelloy C/PVDF valve spring 0.5 bar for DN 25	818518
Hastelloy C/PVDF valve spring 0.5 bar for DN 40	818519

1.10 Special Accessories

pk_1_102

Custom valve balls

Ball valves and accessories for on site retrofitting of metering pumps when the standard material is unsuitable. Supplied loose only.

	Order no.
PTFE diameter 11.0 for DN 10 valve	404260
PTFE diameter 16.0 for DN 15 valve*	404259
PTFE diameter 20.0 for DN 20 valve	404256
PTFE diameter 25.0 for DN 25 valve	404257
PTFE diameter 38.1 for DN 40 valve	404261
Ceramic diameter 11.1 for DN 10 valve	404277
Ceramic diameter 16.0 for DN 15 valve*	404275
Ceramic diameter 20.0 for DN 20 valve	404273
Ceramic diameter 25.0 for DN 25 valve	404274
Ceramic diameter 38.1 for DN 40 valve	404278

^{*} Not suitable for PVT valve material.

E R 3.44* Pk_2_058

Adapter from DN10-3/4" to M20x1.5

Fits 12 x 9 hose connector set

	Material	Order no.
Adapter from DN 10, 3/4" fem. to M20 x 1.5 male	PVDF	1017406

DN15 adapter, 1" (Sigma) to M20 x 1.5

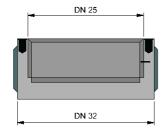
Fits 12 x 9 tube connector kit.

	Material	Order no.
Adapter from DN 15, 1" fem. to M20 x 1.5 male	PVDF	1028530

Dimensions

	Α	ВØ	С	D	E
	mm	mm	mm	mm	mm
Adapter from DN 10, 3/4" fem. to M20 x 1.5 male	35	36	15	12	19
Adapter from DN 15, 1" fem. to M20 x 1.5 male	36	41	15	13	20

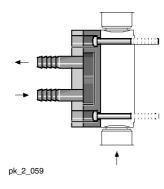
Adapter (complete) from M20 x 1.5 to G3/4 DN10


Consisting of an adapter and a PTFE, EPDM/P, FPM-A flat seal and PTFE shaped composite seal. Suitable for connection of the flow meter DulcoFlow® to a Sigma/ 1.

	Material	Order no.
Adapter (complete) from M20 x 1.5 to G3/4 DN10	PVT	1028409

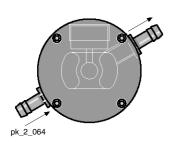
Valve adapter DN 32 - DN 25

Suitable for the liquid end of the Sigma/ 3 metering pump FM 1000 up to 600 l/h.


	Material version	Material	Order no.
Adapter DN 32 - DN 25	SST	1.4404	1035729
	PVT	PVDF	1035732
	TT	PTFE	1040414

P_AC_0244_SW

1.10 Special Accessories


Cooling/heating equipment, diaphragm metering pumps

For stainless steel liquid end. For assembly, including retrofitting, onto the liquid end. 10 mm diameter connectors for hot/cold chemicals with locking screws. Dimensions in mm. Outer diameter A, pitch circle diameter LK.

Temperature -10 ... 80 °C

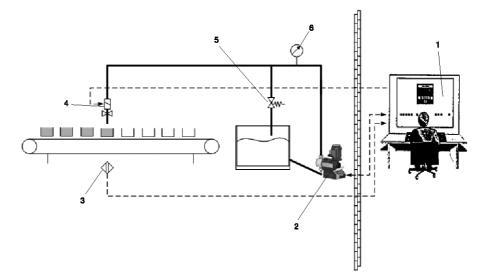
For pump	ØA	Ø LK	Order no.	
	mm	mm		
Sigma/ 1 FM 50/65*	-	-	1025500	
Sigma/ 1 FM 120*	_	_	1025501	
Sigma/ 2 FM 130*	_	-	1002178	
Sigma/ 2 FM 350*	_	_	1002179	
Sigma/ 3 FM 330*	-	-	1006455	
Sigma/ 3 FM 1000*	_	_	1006456	
Hydro/ 2/3 FMH 025/060	-	-	1024743	
Hydro/ 3 FMH 150	_	-	1040112	
Hydro/ 4 FMH 400	-	-	1047700	
Meta, Makro TZ FM 130, FM 260	145	127	803751	
Meta, Makro TZ FM 530	180	164	803752	
Makro TZ FM 1500/2100	248	219	806005	
Makro/ 5 FM 4000	-	-	1020683	
Makro TZ FMH 70/20	_	_	1041263	
Makro/ 5 FMH 85/50	_	-	1041261	
Makro/ 5 FMH 60/50	_	_	1041260	
Makro/ 5 FMH 130/50	-	-	1041262	

^{*} Adapted to the design with the new multi-layer safety diaphragm.

Cooling/heating equipment, plunger metering pumps

The cooling/heating equipment is installed in the liquid end. 10 mm diameter connectors. Cannot be retrofitted.

For pump	Order no.
Sigma HK - 08 S	1040459
Meta/Sigma HK - 12.5 S	803551
Meta/Sigma HK - 25 S	803552
Meta/Sigma HK - 50 S	803553
Makro TZ FK 30	1036645
Makro TZ FK 50	1036655
Makro TZ FK 85	1024665


Cooling/heating equipment for Makro TZ HK on request.

Metering of Highly Viscous Substances

Product: Motor-driven pumps

Viscous filler Metered medium: Sector: **Electronics** Application: Part filling

- Process control system (master)
- Metering pump, Sigma (field unit)
- Proximity switch Solenoid valve
- Overflow valve
- Pressure gauge
- pk_2_113

Tasks and requirements

- Metering of a viscous filler in templates
- Metering accuracy ±2%
- Varying filling volumes

Operating conditions

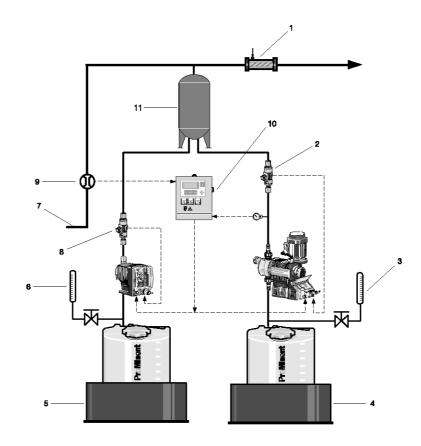
- The templates pass the metering point on a conveyor in "stop and go" operation.
- The pump is started by a proximity switch at the conveyor (external contact control).

Notes on application

- The start always begins with a pressure stroke, i.e. controlled stop of the diaphragm at the end of the
- When varying the filling volume, a stroke length as large as possible should be chosen this improves
- Short and stable suction and metering lines, no pulsation damper thus reduction of the flexible (moved) volume.
- If possible work with feed so that the suction lines are always filled with liquid even during longer idle
- A solenoid valve is required for filling to prevent dripping of the residual quantities.

- Sigma Control metering pump with PROFIBUS® connection
- Overflow valve, solenoid valve

- Monitoring of the metering pump and setting of the metering amount (number of strokes) by PCS in the control centre
- Less electrical installation work required
- Integration into the complete process flow through PROFIBUS®
- Safe and precise metering thanks to overflow and solenoid valves



1.11.2 Mixing Two Reagents

Product: Motor-driven pumps, solenoid-driven pumps

Metered medium: Chlorine activator, oxidant (NaOCI)
Sector: Process industry, power stations

Application: Biocide handling in cooling water systems

- 1 Static mixer
- 2 Flow Control3 Feed measuring unit
- 4 NaOCI solution
- 5 Chlorine activator
- 6 Feed measuring unit
- 7 Motive water
- 8 Flow Control
- 9 Flow rate measurement10 Control cabinet
- 10 Control cabinet11 Reaction chamber

pk_2_114_1

Tasks and requirements

- Biocide treatment of cooling water systems used in combination with chlorination processes.
- Chlorine activator is mixed with NaOCI to produce hyprobromide acid (HOBr) as an active biocide compound. HOBr is particularly effective at pH values from 7.5 to 9.0.
- A level of 0.5 g/m³ of active HOBr over a period of 1 hour is to be secured twice a day for the purpose of disinfecting the cooling water.

Operating conditions

- Biologically polluted water
- Automatic activation of metering pumps

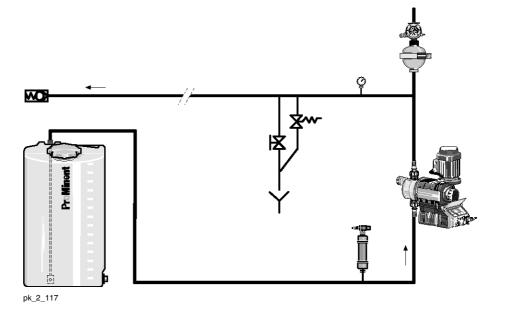
Application information

- The mixing ratio of chlorine activator and NaOCI (12.5 % solution) is 10 I to 26 52 I. The exact composition is to be determined by means of tests (on site).
- Metering pump with timer function activates the second pump and is therefore responsible for batch metering.
- Motor-driven pump is protected against overload by a pressure gauge with pressure switch. The pressure gauge is connected to the control system.
- The control system monitors the installation and switches off the flow meter in response to corresponding signals (fault signalling).

Solution

- gamma/ L metering pump with timer function (possibly with external timer)
- Sigma/ 1 metering pump, control version
- Feed monitoring, flow control
- Feed measuring facility
- Pressure gauge with pressure switch

Benefits


- Efficient disinfection in water containing alkali and ammoniac
- Inexpensive raw material basis that is also stable and non-corrosive
- High degree of reliability ensured by flow monitoring
- Simple and effective facility for optimising the chemical composition in connection with feed measuring

1.11.3 Safe and Reliable Chemical Metering with Reduced Pulsation

Product: Metering pump, accessories

Metered medium: High viscosity chemicals

Application: Use of pulsation damper (PD)

Tasks and requirements

- For process-technical reasons, a low-pulsation metering flow is desired.
- Mass accelerating forces during metering, caused by the oscillating movement of the displacement body in connection with the piping geometry need to be reduced.
- Cavitation-free process flow

Operating conditions/environment

- Long suction/discharge lines
- Line cross-section with small dimensions
- Metering of high-viscosity, inert media

Notes on application

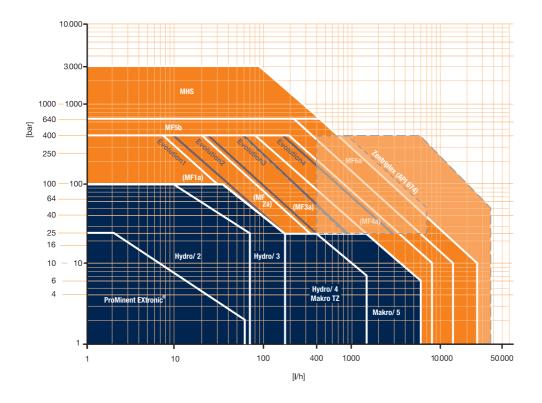
- Pressure surges increase with increasing metering line length and smaller diameter; these may result in impermissible pressure peaks.
- For longer pipes, as well as for higher viscosity media, the need for a PD using a pipe calculation programme is to be evaluated.
- In an oscillating motor-driven metering pump, the maximum flow rate is approx. 3 times greater than the mean, in a solenoid-driven pump approx. 5 times as great. This is to be considered when designing pipings without PD.
- PD should be preloaded with compressed air or nitrogen at approx. 60-80% of the operating pressure to be expected.

Solution

- ProMinent® metering pumps
- Pressure-relief/overflow valves
- Pulsation dampers

Benefits

- Safe installation preventing damage to pumps and pipes
- Precise metering by avoiding of cavitation
- Compensation of delivery flow fluctuations



Process Metering Pumps

2.0 Overview of Process Metering Pumps

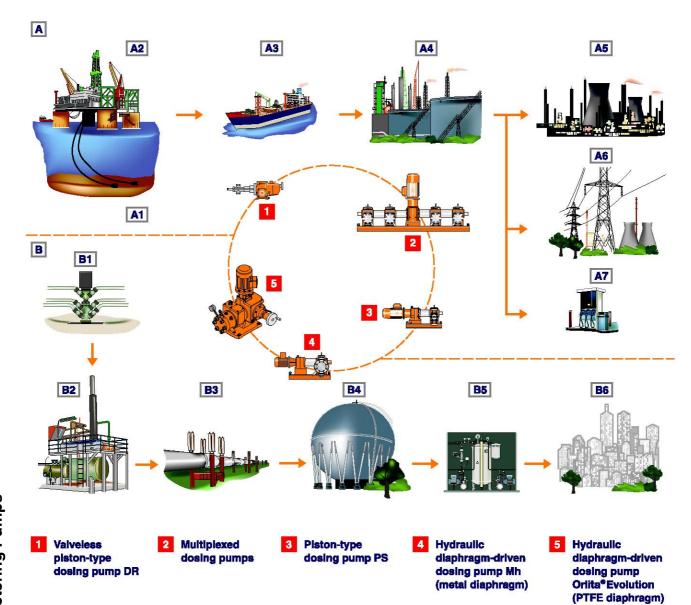
2.0.1

Selection Guide

S43

Overview of Process Metering Pumps

Туре		EXBb	TZMb	М5Ма	HP2a	НР3а	HP4a	М5На	SBKa/ SCKa	MTKa	TZKa	M5Ka
Stroke length	mm	1.25	0 - 10	0 - 20	15	15	20	0 - 50	0 - 15	0 - 15	0 - 20	0 - 50
Connecting rod force	N	2,000	8,000	10,000	2,000	4,200	5,800	10,000	1,700	2,500	8,000	10,000
Туре		EF1a	EF2a	EF3a	EF4a	EP1a	EP2a					
Stroke length	mm	0 - 15	0 - 15	0 - 25	0 - 40	0 - 15	0 - 15	_				
Connecting rod force	N	2,300	5,400	8,000	15,700	2,300	5,400					
Туре		S 18	S 35	S 8	0 9	S 180	S 600	S 1400) Rb	15 R	b 150	Zentriplex
Stroke length	mm	0 - 15	0 - 20	0 - 2	20 (- 40	0 - 40	0 - 60	0 - 1	5 0	- 32	40
Connecting rod force	N	1,750	3,500	14,0	000 1	8,000	40,000	60,000	1,80	0 1	5,000	18,000


Pro

2.0 Overview of Process Metering Pumps

2.0.2 Installation Applications

- A Oil Industry
- A1 Well
- A2 Platform
- A3 Transportation (tanker, pipeline)
- A4 Refinery
- A5 Petrochemical
- A6 industry/power plants
- A7 Filling stations

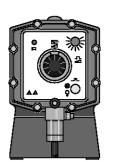
- B Gas Industry
- B1 Wel
- B2 Gas treatment/gas drying
- B3 Transportation (tanker, pipeline)
- B4 Gas storage tank
- B5 Local distribution/odorization
- B6 Industry/power plants

pk_3_07

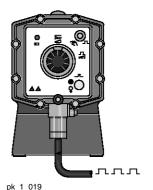
2.1 Diaphragm Metering Pump ProMinent EXtronic®

2.1.1

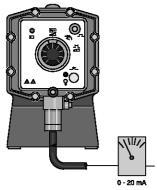
Diaphragm Metering Pump ProMinent EXtronic®


Precise metering with explosion protection

Capacity range of single pump: 0.19 - 60 l/h, 10 - 1.5 bar


The diaphragm metering pump EXtronic® is perfectly suited for the sensitive use of liquid media in facilities with an explosive gas atmosphere as well as for mines at risk of firedamp, as it is approved in compliance with the EC EX Regulation 94/9/EC (ATEX).

The ATEX-compliant diaphragm metering pump EXtronic[®] (EXBb) is tested and approved in line with the harmonised EC provisions of EN 50014/50018 for "compression-resistant enclosures" and thus offers the


pk_1_020
Control type "Internal"

Stroke length adjustment 1:10, stroke rate adjustment 1:25, total adjustment range 1:250.

Control type "External Contact"

Stroke length adjustment 1:10, Stroke frequency control 0 - 100% dependant upon external switch contacts. *)

pk_1_018

Control type "Analogue"

Stroke length adjustment 1:10, Stroke frequency control 0-100 % proportional to analogue signal 0/4-20 mA. *)

*) The electrical cables for mains connection, contact or analogue control are already connected to the pump. Observe all instructions concerning connecting and activating electrical systems.

maximum level of protection. The short-stroke solenoid and the complete pump control are integrated in the pump housing so that, together with the explosion-proof power end, there is IP 65 protection against contact and humidity as per DIN 40050 even when the front cover is open.

Your benefits

Optimum adaptation for use in areas at risk from explosion

- ATEX-compliant in line with EExd IIC T6 and EExd I/IIC T6
- Excellent operating and functional reliability by a microprocessor controller, which compensates for fluctuations of mains voltage and automatically switches from 50 to 60 Hz operation
- Broad range of applications with an operating voltage of 500 V, 230 V and 115 V
- Ease of integration into processes thanks to the range of control types (internal, external contact, analogue)
- Also suitable for gaseous media, thanks to self-bleeding head

Technical Details

- Stroke length: 1.25 mm, Rod force: 2,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by scaled rotary dial
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- DEVELOPAN® metering diaphragm with PTFE coating with diaphragm rupture control
- Wetted materials: Polypropylene, PVC, PTFE with carbon, clear acrylic, stainless steel, special designs available on request
- Degree of protection: IP 65 (also with open front cover)
- Short stroke solenoid drive and complete pump control integrated in the pump housing
- "Internal", "External contact" and "Analogue" control inputs available, the latter two also available as intrinsically safe and approved to EN 50020
- EXBb G for use in areas at risk from gases and vapours, degree of protection EEx [i,a] d IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- \blacksquare T6 Temperature class permissible for gases and vapours with ignition temperature > 85 $^{\circ}\text{C}$
- EXBb M for use in mines at risk from firedamp, degree of protection EEx [i,a] d I/IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IC Explosion group I for mines at risk from firedamp
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- T6 Temperature class permissible for gases and vapours with ignition temperature > 85 °C

Field of application

- Oil, gas and petrochemicals
- Mining
- For use in areas at risk of gases and vapours
- Use in mines at risk from firedamp

Process Metering Pumps

Diaphragm Metering Pump ProMinent EXtronic®

Technical Data

Type EXBb	Delivery rate at max. back pressure		Delive	ry rate at back p	medium oressure	Stroke rate	oØ x iØ	Suction lift	Shipping weight PP,NP,TT-SS	
	bar	l/h	ml/ stroke	bar	l/h	ml/ stroke	Strokes/ min	mm	m WC	kg
EXBb										
1000	10	0.19	0.03	5	0.27	0.04	120	6 x 4	1.5	12
2501	25	1.14	0.15	20	1.10	0.17	120	6 x 4	5.0	_
1601	16	1.00	0.15	8	1.30	0.18	120	6 x 4	5.0	12
1201	12	1.70	0.23	6	2.00	0.28	120	6 x 4	5.0	12
0803	8	3.70	0.51	4	3.90	0.54	120	6 x 4	3.0	12
1002	10	2.30	0.31	5	2.70	0.38	120	8 x 5	5.0	12
0308	3	8.60	1.20	1	10.30	1.43	120	8 x 5	5.0	12
2502	25	2.00	0.28	20	2.20	0.31	120	8 x 5	5.0	13
1006	10	6.00	0.83	5	7.20	1.00	120	8 x 5	5.0	13
0613	6	13.10	1.82	3	14.90	2.07	120	8 x 5	5.5	13
0417	3	17.40	2.42	2	17.90	2.49	120	12 x 9	4.5	13
2505	25	4.20	0.64	20	4.80	0.73	110	8 x 5	5.0	16
1310	13	10.50	1.59	6	11.90	1.80	110	8 x 5	5.0	16
0814	8	14.00	2.12	4	15.40	2.33	110	12 x 9	5.0	16
0430	3	27.00	4.09	2	29.50	4.47	110	DN 10	5.0	16
0260	1	60.00	9.09	_	-	_	110	DN 15	1.5	16
EXtronic® me	etering pur	nps for hig	jh viscosi	ty media						
1002	10	2.30	0.31	5	2.70	0.38	120	DN 10	1.8	_
1006	10	6.00	0.83	5	7.20	1.00	120	DN 10	2.0	-
1310	10	10.50	1.59	5	11.90	1.80	110	DN 15	2.8	_
0814	8	14.00	2.12	4	15.40	2.33	110	DN 15	2.0	-
EXtronic® me	tering pur	nps with s	elf-bleedi	ng liquid e	nd					
1601	16	0.66	0.09	_	_	_	120	6 x 4	1.8	_
1201	12	1.00	0.14	-	-	-	120	6 x 4	2.0	-
0803	8	2.40	0.33	-	-	-	120	6 x 4	2.8	_
1002	10	1.80	0.25	-	-	-	120	6 x 4	2.0	-

Shipping weight for EXBb M version... additional 14 kg

Materials in Contact With the Medium

	Liquid end	Suction/discharge connector	Seals	Balls (connection 6-12 mm)	Balls (connection DN 10 and DN 15)
PP1	Polypropylene	Polypropylene	EPDM	Ceramic	Borosilicate glass
PP4*	Polypropylene	Polypropylene	EPDM	-	Ceramic
NP1	Plexiglass	PVC	FKM A	Ceramic	Borosilicate glass
NP3	Plexiglass	PVC	FKM B	Ceramic	-
NS3**	Plexiglass	PVC	FKM B	Ceramic	-
PS3**	PVC	PVC	FKM B	Ceramic	-
TT1	PTFE with carbon	PTFE with carbon	PTFE	Ceramic	Ceramic
SS	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4404	PTFE	Ceramic	Stainless steel mat. no. 1.4404

PP4 with valve springs made of Hastelloy C

The data given here represent guaranteed minimum values, achieved with medium water at room temperature.

NS3 and PS3 with valve springs made of Hastelloy C, valve insert made of PVDF FKM = fluorine rubber

2.1 Diaphragm Metering Pump ProMinent EXtronic®

2.1.2 Identity Code Ordering System for EXBb

EXBb	Enclos	sure rat	ing								
	G		X-proof								
	М	Fire an	d explo	sion pro	tection,	permitte	d liquid	end ma	terial: stainless steel and PTFE		
		Capac	ity								
			bar	l/h							
		1000	10	0.19							
		2501	25		, ,		only available in SS and SB)				
		1601	16	1.00							
		1201	12	1.70							
		0803 1002	8 10	3.70 2.30							
		0308	3	8.60							
		2502	25	2.00	(availal	ole in S	S and SI	3 only)			
		1006	10	6.00	(availai	310 111 00	J and O	o only)			
		0613	6	13.10							
		0417	4	17.40							
		2505	25	4.20	(only a	vailable	in SS a	nd SB)			
		1310	13	10.50	(only a	vailable	in NP, F	PP4, SS	and SB)		
		0814	8	14.00							
		0430	4	27.00							
		0260	2	60.00							
				end ma							
			PP1		opylene						
			PP4		iypropyi 1002, 1				uids with EPDM O-ring and Hastelloy C valve springs		
			NP1		with FK			0014011	(עי		
			NP3		with FK		•				
			NS3				-	lf bleedi	ng (Types 1601, 1201, 0803 and 1002 only)		
			PS3	PVC w	ith FKM	B O-ring	g*, self l	oleeding	(Types 1601, 1201, 0803 and 1002 only)		
			TT1		with carb						
			SS1		ss steel		,				
SS2 Stainless steel with 1/4" NPT internal thread, PTFE seal							,				
		SB1 Stainless steel with ISO 7 Rp 1/4 internal thread, ISO 7 Rp 1/2 on type 0260, PTFE seal (recommended for flammable mat									
			SSM SBM	, , , , , ,							
			ODIVI		ve springs						
				0	No spri						
				1	With 2 valve springs, 1.4571, 0.1 bar						
						cal con					
					Α	230 V,	50/60 H	lz			
					В		50/60 H				
					E		50/60 H	lz			
						Contro		Latualia			
						0		ıı stroke al conta	rate adjustment via potentiometer		
						2		ue 0-20			
						3		jue 4-20 jue 4-20			
						4	_		ct, intrinsically safe [i,a]		
						5			mA, intrinsically safe [i,a]		
						6			mA, intrinsically safe [i,a]		
						7	Manua	l with ze	ero volts ON/OFF		
						8	Manua	l with ze	ero volts ON/OFF, intrinsically safe [i,a]		
							Contro	ol Versi			
							0	With po	otentiometer (control type 0. 7 and 8 only)		
							1		anual auxiliary key for maximum stroke rate (control type 1-6 only)		
							2		anual auxiliary frequency changer key for maximum stroke rate (control type 1-6 only)		
								Appro 0	ved/Language BVS - Europe, German, 100 V - 500 V		
								1	BVS - Europe, German, 100 V - 500 V BVS - Europe, English, 100 V - 500 V		
								2	FM - USA, English, 115 V		
								3	CSA - Canada, English, 115 V, 230 V		
								_			

^{*} FKM = Fluorine rubber

2.1 Diaphragm Metering Pump ProMinent EXtronic®

Design of connectors

With PP, NP, NS, PS and TT	6, 8 and 12 mm	Hose nozzle with clamping ring
With stainless steel SS1/ SSM	6, 8 and 12 mm	Swagelok system threaded connector
With stainless steel SS2	6, 8 and 12 mm	Internal thread 1/4" NPT
With stainless steel SS1/ SBM	6, 8 and 12 mm	Internal thread ISO 7 Rp 1/4

With PP and NP	DN 10 and DN 15	Hose nozzle d 16 - DN 10 and d 20 - DN 15
With TT	DN 10 and DN 15	Welding sleeve d 16 - DN 10 and d 20 - DN 15 (PVDF)
With stainless steel SS1	DN 10 and DN 15	Insert with internal thread R 3/80 and R 1/2"
With stainless steel SB1	DN 10 and DN 15	Internal thread ISO 7 Rp 1/4 and 1/2

Repeatability of metering ±2% when performed in line with the information in the operating instructions.

For type 1601 with self-bleeding dosing head $\pm 5\%$.

Permissible ambient temperature: -20 °C to +45 °C.

Electrical connection: 500 V ±6%, 50/60 Hz

230 V ±10%, 50/60 Hz 115 V ±10%, 50/60 Hz

Degree of protection: IP 65, insulation class F

Average power consumption at max. stroke rate (W)/peak current during metering stroke (A) at 230 V, $50/60 \; \text{Hz}$

EXBb	Type 1000, 2501, 1601, 1201, 0803, 1002, 0308	13 W/0.8 A	at 120 strokes/min.
EXBb	Type 2502, 1006, 0613, 0417	35 W/1.8 A	at 120 strokes/min.
EXBb	Type 2505, 1310, 1014, 0430, 0260	45 W/2.2 A	at 110 strokes/min.

Scope of delivery: Metering pump with mains cable (5 m) and connector parts for hose/pipe connection as per the table.

2.1.3 Spare Parts

Spare Parts Kits for Diaphragm Metering Pump ProMinent EXtronic®

Scope of delivery with material versions PP and NP:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 1 Sealing set, complete
- Connector kit

Scope of delivery with material versions NS3 and PS3:

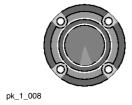
- 1 Diaphragm
- 1 Suction valve, complete
- 1 Connector component, complete
- 1 Discharge valve, complete
- 1 Bleed valve, complete
- 1 Connector kit

Scope of delivery with material version TT-PTFE:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 2 Ball seat discs
- 1 Sealing set, complete
- 1 Connector kit

Scope of delivery with SS stainless steel material version:

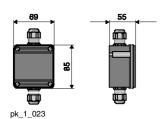
- 1 Diaphragm
- 4 Valve balls
- 4 Ball seat discs
- 1 Sealing set, complete
- 1 Connector kit


Diaphragm Metering Pump ProMinent EXtronic®

Pump type	Materials in contact with the medium		Order no.
EXBb 1000	PP1		740357
	NP3		740354
	TT		910776
	SS/SK		910777
EXBb 2501	SBM		1020281
	SSM		1020282
EXBb 1601	PP1		740361
	NP3		740358
	NS3/PS3		792033
	Π		910778
	SS/SK		910779
EXBb 1201	PP1		740380
	NP3		740362
	NS3/PS3		792034
	ТТ		910780
	SS/SK		910781
EXBb 0803	PP1		740384
	NP3		740381
	NS3/PS3		792035
	тт		910782
	SS		910783
EXBb 1002/2502	PP1		740388
	NP3		740385
	NS3/PS3		792036
	П		910784
	SS		910785
	HV/PP 4	Type 1002	910743
EXBb 0308/1006/2505	PP1	7,1	740497
	NP1		740498
	π		910957
	SS		910959
	HV/PP4	Type 1006	910939
EXBb 0613/1310	PP1	. , po	740504
2/12/2 0010/1010	NP1		740505
	TT		910969
	SS		910971
	HV/PP4	Type 1310	910941
EXBb 0417/0814	PP1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	740501
	NP1		740502
	π		910977
	SS		910979
	HV/PP4	Type 0814	910943
EXBb 0430-DN 10	PP1	71	740507
	NP1		740508
	TT		910993
	SS		910995

Replacement parts set as DN 10 with one-way ball valves.

2.1 Diaphragm Metering Pump ProMinent EXtronic®

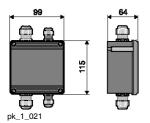

Spare Diaphragms for Diaphragm Metering Pump ProMinent EXtronic®

ProMinent® DEVELOPAN® EPDM metering diaphragms with woven inner layer, integrally vulcanised steel core and PTFE Teflon coating on the side in contact with the feed chemical.

For pump type	Description	Order no.
1000	31.0 x 6.0	811452
2501	35.0 x 11.5	1000246
1601	48.0 x 9.5	811453
1201	48.0 x 12.5	811454
0803	48.0 x 18.5	811455
1002, 2502	60.0 x 17.0	811456
0308, 2505, 1006	60.0 x 28.0	811457
1310, 0613	76.0 x 37.0	811458
0814, 0417	76.0 x 45.0	811459
0430, 0230	127.5 x 63.0	811460
0260	127.5 x 91.0	811461

2.1.4

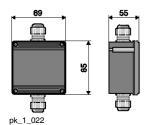
Ex-Proof Ancillary Equipment



Plastic terminal box: Type I

IP 66, EEx e II T 6, max. 380 V for mains connection, e.g. of ProMinent EXtronic® in areas at risk of explosion.

Order no.


1 input, 1 output for power supply cable. 2 terminals + PE and 2 M 20- 1000071 12 screw glands

Plastic terminal box: Type II

IP 6, EEx e II T 6, max. 380 V. As type I, but with additional connector for control cable (e.g. for contact water meter or DULCOMETER® controller).

	Order no.
2 inputs (mains and controller cable), 2 outputs	1000072
2 terminals + PE, 1 partition, 2 terminals and	
2 M 20-12 screw glands and	
2 M 16-0.8 screw glands	

Plastic terminal box: EExi Type I

IP 66, EEx ia II T 6 for intrinsically safe control cable

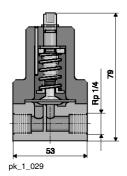
	Order no.
1 input, 1 output for control cable, 2 terminals and 2 M 16-0.8, blue	1000073
screw glands	

Diaphragm Metering Pump ProMinent EXtronic®

Rp 1/2 SW 32 pk_1_30 / pk_1_031

Stainless steel foot valve 1.4404 "SB"

With filter and ball check valve, designed for use with flammable materials. Materials: 1.4404/1.4401/PTFE/ceramic


	Order no.	
Connector ISO 7 Rp 1/4 SB version for ProMinent EXtronic®	809301	
Connector ISO 7 Rp 1/2 SB version for ProMinent EXtronic®	924561	

Rp 1/2 Rp 1/2 SW 32 Rp 1/4 pk_1_032_2 / pk_1_027

Stainless steel 1.4404 "SB" metering valve

Spring-loaded ball check valve designed for use with flammable materials. Materials: 1.4404/1.4401/Hastelloy C/PTFE/ceramic

	Order no.
Connector ISO 7 Rp 1/4 - R 1/2, priming pressure approx. 0.5 bar	809302
Connector ISO 7 Rp 1/2 - R 1/2, priming pressure approx. 0.5 bar	924560

Adjustable "SB" back pressure valve

	Order no.
Operating range approx. 1-10 bar, closed version, designed for use with flammable materials.	924555

To generate a constant back pressure for accurate metering with a free outlet. Can also be used as an

PTFE metering pipe

Carbon-filled, surface resistance $< 10^7 \Omega$

Material	Length	Connection size o Ø x i Ø	Permissible pressure	Order no.
	m	mm	bar	
Carbon-filled PTFE	By the metre	6 x 4	12*	1024831
Carbon-filled PTFE	By the metre	8 x 5	16*	1024830
Carbon-filled PTFE	By the metre	12 x 9	9*	1024832

Permissible operating pressure at 20 °C in accordance with EN ISO 7751, 1/4 of the rupture pressure, assuming chemical resistance and correct connection.

Additional ancillary equipment, i.e. foot valves, metering valves and back pressure valves in the usual material combinations, identical to gamma ancillary equipment and/or for connector DN 15 Vario ancillary equipment.

(Hydraulic/Mechanical Accessories see p. → 1-46)

Process Metering Pumps

Diaphragm Metering Pump ProMinent EXtronic®

pk_1_028

Stainless steel straight threaded connectors

Swagelok system in stainless steel SS 316 (1.4401) for connection of pipework to liquid ends and valves with internal thread and for SB version.

Normal threaded seal compounds required.

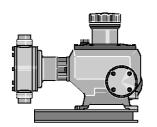
	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
16 mm - ISO 7 R 1/2	359529

2.2.1

pk 2 012 Makro TZ TZMb

pk_2_013

pk 2 014

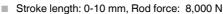

Diaphragm Metering Pump Makro TZ

Capacity range of single pump: 260 - 2,100 l/h, 12 - 4 bar

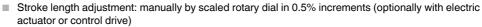
Greater safety in continuous operation through mechanically deflected multi-layer safety diaphragm.

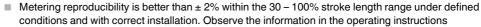
The modular construction of the diaphragm metering pump Makro TZ with adjustable eccentric drive mechanism and mechanically deflected multi-layer safety diaphragm makes it wonderfully adaptable to the capacity requirements of the respective application.

The diaphragm metering pump Makro TZ (TZMb) has an adjustable eccentric drive mechanism and, together with the Makro TZ plunger metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

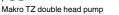

Excellent process safety and reliability:

- Patented multi-layer safety diaphragm with integral diaphragm rupture warning system
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation




- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump
- 5 different gear ratios are available
- Customised designs are available on request

Technical Details



- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with electrical diaphragm rupture warning system / warning via a contact)
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

Makro TZ externally mounted nump

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

Process Metering Pumps

2.2 Diaphragm Metering Pump Makro TZ

Technical Data

Type TZMb	W	ith 1500	0 rpm mo	otor at 50 Hz	With 1800 rpm motor at 60 Hz				Suction lift	Connection, suction/	Shipping weight PP,NP,TT-SS
		•	rate at ressure	Max. stroke rate	Deliv	ery rate back pi	at max. ressure	Max. stroke rate		discharge side	
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	m WC	G-DN	kg
120260	12	260	60	72	174	312	82	86	4.0	1 1/2–25	46/54
120340	12	340	60	96	174	408	108	115	4.0	1 1/2–25	46/54
120430	12	430	60	120	174	516	136	144	4.0	1 1/2–25	46/54
120510	12	510	60	144	174	622	164	173	4.0	1 1/2–25	46/54
120650	12	640	60	180	174	-	-	-	4.0	1 1/2–25	46/54
070430	7	430	99	72	100	516	136	86	3.5	2-32	50/64
070570	7	570	99	96	100	684	181	115	3.5	2–32	50/64
070720	7	720	99	120	100	864	228	144	3.5	2–32	50/64
070860	7	860	99	144	100	1,032	273	173	3.5	2–32	50/64
071070	7	1,070	99	180	100	_	_	-	3.5	2–32	50/64
040840	4	840	194	72	58	1,008	266	86	3.0	2 1/4-40	56/80
041100	4	1,100	194	96	58	1,320	349	115	3.0	2 1/4-40	56/80
041400	4	1,400	194	120	58	1,680	444	144	3.0	2 1/4–40	56/80
041670	4	1,670	194	144	58	2,004	529	173	3.0	2 1/4-40	56/80
042100	4	2,100	194	180	58	-	-	-	3.0	2 1/4–40	56/80

Stroke length 10 mm

Plastic material design: max. 10 bar back pressure

The permissible priming pressure on the suction side is approximately 50% of the max. permitted back pressure

Materials in Contact With the Medium

			DN 25 I	oall valves	DN 32/DN 40 plate valves **			
	Liquid end	Suction/ discharge connector	Seals	Valve balls	Valve seats	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PVDF	PTFE	Ceramic	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4581	PTFE	Stainless steel mat. no. 1.4401	PTFE	PTFE	Stainless steel 1.4404/Hast. C	PTFE

Multi-layer safety diaphragms with PTFE coating.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.2.2

Identity Code Ordering System for TZMb

Makro TZMb mechanically deflected diaphragm metering pump

TZMb	Drive t	type												
	Н	Main dri	ve											
	Α	Add-on	dd-on drive											
	D	Double	ole main drive											
	В	Double	ible add-on drive											
		Type*	Type*											
		120260	1		070430			040840						
		120340			070570			041100						
		120430			070720			041400						
		120510			070860			041670						
		120650			071070			042100						
		120030			aterial **			042100						
			PC	PVC	ateriai "									
			PP	_	opylene									
			SS		ess steel									
			TT		+ 25% ca									
			11											
					Sealing material									
				Т										
					Displac									
					1		•	ety diaph	ragm w	ith ruptu	ire indic	ator		
							end ve							
						0		ve spring						
						1	With va	alve sprir	ıgs					
							Hydra	ulic con	nection	1				
							0	Standar						
							1	PVC un	ion nut	and inse	ert			
							2	PP unio	n nut a	nd inser	t			
							3	PVDF u	nion nu	it and in	sert			
							4	SS unio	n nut a	nd inser	t			
								Version	1					
								0		roMiner	nt® logo			
								2		Minent				
								A				with fra	ame, simplex	
								В					ame, duplex	
								C			•		ame, triplex	
								М	Modif		it logo,	within	arrie, triplex	
								IVI						
									S	rical po) Hz (WBS)	
									R				, 4-pole, 230/400 V	
													•	
									V (0)				with integr. frequency converter	
									Z		control		- (F FI)	
									L				z (Exe, Exd)	
									P				z (Exe, Exd)	
													with integr. frequency converter (Exd)	
									4				lange 56 C	
									7				lange 120/80	
									8				lange 160/90	
									0	No mo	tor, exte	rnally m	nounted drive	
											sure rat			
										0			rd) ISO class F	
										1	Exe ve	rsion A	TEX-T3	
										2	Exd ve	rsion A	TEX-T4	
										Α	ATEX	oower e	end	
											Stroke	senso	or	
											0	No stro	oke sensor	
											1	With st	stroke sensor (Namur)	
												Stroke	e length adjustment	
												0	Stroke length adjustment, manual	
									1			1	230 V stroke actuator	
												2	115 V stroke actuator	
												3	230 V 0-20 mA stroke controller	
									1					
												4	230 V 4-20 mA stroke controller	
			1	i	1	1	1		1	1		5	115 V 0-20 mA stroke controller	
										1				
												6	115 V 4-20 mA stroke controller (servo motors for Ex	
												6	zones on request)	
												6	zones on request) Application	
												б	zones on request)	

 $^{^{\}star}$ Digits 1 + 2=back pressure [bar]; digits 3 - 6=capacity [l/h]

^{**} Material version PCT/PPT/TTT max. 10 bar

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	1.1 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.75 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.2.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

- Metering diaphragm (multi-layer safety diaphragm)
- Suction valve complete
- Discharge valve complete
- Valve balls (DN 32/DN 40 with plate and spring)
- Complete sealing set (O-rings or flat seals, valve seats, valve seat bushings)

Spare Parts Kits for Diaphragm Metering Pump Makro TZ (TZMb)

Identity Code: 120260, 120340, 120430, 120510, 120650

Liquid end	Materials in contact with the medium		Order no.
FM 650 - DN 25	PCT, PPT, TTT		1025164
	SST		1022896
	SST	without valves cpl.	1022895

Identity Code: 070430, 070570, 070720, 070860, 071070

Liquid end	Materials in contact with the medium		Order no.
FM 1100 - DN 32	PCT, PPT, TTT		1025167
	SST		1022917
	SST	without valves cpl.	1022916

Identity Code: 040840, 041100, 041400, 041670, 042100

Liquid end	Materials in contact with the medium		Order no.
FM 2100 - DN 40	PCT, PPT, TTT		1025169
	SST		1022930
	SST	without valves cpl.	1022929

Multi-Layer Metering Diaphragm for TZMb

ProMinent multi-layer safety diaphragm with diaphragm rupture warning system and PTFE Teflon coating on the wetted side.

Pump type	Order no.
Identity code: 120260, 120340, 120430, 120510, 120650; Makro TZ FM 650	1022887
Identity code: 070430, 070570, 070720, 070860, 071070; Makro TZ FM 1100	1022900
Identity code: 040840, 041100, 041400, 041670, 042100; Makro TZ FM 2100	1022921

Spare Parts Kits for Diaphragm Metering Pump Makro TZ (TZMa)

Identity Code: 120190, 120254, 120317, 120381

Liquid end	Materials in contact with the medium		Order no.
FM 260 - DN 20	PP		910452
	Р		910455
	Т		910458
	S	without valves cpl.	910475
	S		910461

Identity Code: 060397, 060529, 060661, 060793

Liquid end	Materials in contact with the medium		Order no.
FM 530 - DN 25	PP		910453
	Р		910456
	Т		910459
	S	without valves cpl.	910476
	S		910462

Identity Code: 030750, 031000, 031250, 031500, 031875, 031050, 031395, 031740, 032100, 032500

Liquid end	Materials in contact with the medium		Order no.
FM 1500/2100 - DN 40	PP		1001573
	Р		1001574
	Т		1001575
	S	without valves cpl.	1001577
	S		1001576

Process Metering Pumps

2.2 Diaphragm Metering Pump Makro TZ

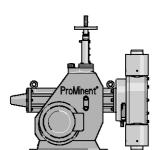
PTFE Metering Diaphragms for TZMa

ProMinent® DEVELOPAN® metering diaphragms with a generously-sized steel core vulcanised into fibre reinforced EPDM, with a PTFE Teflon coating on the process-wetted side.

Pump type	Order no.
Identity code: 100190, 120190, 100254, 100317, 120317, 100381, 120381; Makro TZ FM 260	811471
Identity code: 060397, 060529, 060661, 060793; Makro TZ FM 530	811472
Identity code: 030750, 031000, 031250, 031500, 031050, 031395, 031740, 032100, 032500; Makro TZ FM 1500/FM 2100	811473

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.


2.3.1

Diaphragm Metering Pump Makro/ 5

It is not possible to do more with a mechanically deflected diaphragm Capacity range of single pump: 1,540 – 4,000 l/h, 4 bar

The diaphragm matering numn Makro/ 5 is used to mater reactants and o

pk_2_099 Makro/ 5 M5Ma

The diaphragm metering pump Makro/ 5 is used to meter reactants and catalysts in the chemical industry. Thanks to its modular construction, it can adapt outstandingly to the actual requirements of each application.

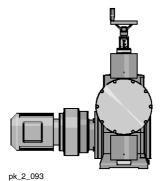
The diaphragm metering pump Makro/ 5 (M5Ma) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,000 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

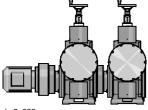
Your benefits

Process reliability:

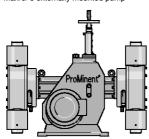
Metering reproducibility is better than ± 2% within the 30-100% stroke length range under defined conditions and with correct installation.

Excellent flexibility:


- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request


Technical Details

- Stroke length: 0-20 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast iron housing
- For reasons of safety, provide suitable overload protection mechanisms during the installation of all mechanically deflected diaphragm metering pumps


Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_098
Makro/ 5 externally mounted pump

pk_2_095 Makro/ 5 double head pump

Diaphragm Metering Pump Makro/5

Technical Data

Type M5Ma	With 1500 rpm motor at 50 Hz Delivery rate at Max. stroke max. back pressure rate			With 180 Delivery . back pi	rate at	notor at 60 Hz Max. stroke rate	Suction lift	Connection, suction/ discharge side	Shipping weight		
	bar	l/h	ml/ stroke	Strokes/min	psi	l/h	gph (US)	Strokes/min	m WC	G-DN	kg
041540	4	1,540	427	60	58	1,822	481	71	3.0	2 3/4–50	320
041900	4	1,900	427	75	58	2,254	595	89	3.0	2 3/4-50	320
042600	4	2,600	427	103	58	3,104	820	123	3.0	2 3/4–50	320
043400	4	3,400	427	133	58	4,064	1,074	159	3.0	2 3/4-50	320
044000	4	4,000	427	156	58	-	-	_	3.0	2 3/4–50	320

Stainless steel version: Shipping weight 340 kg

The permissible admission pressure on the intake side is approx. 50% of the maximum permissible back pressure.

Materials in Contact With the Medium

DN 50 plate valves

	Liquid end	Suction/discharge valve	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVC	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4571/1.4404	Stainless steel mat. no. 1.4571/1.4404	PTFE	Stainless steel mat. no. 1.4404/ Hast. C	PTFE

DEVELOPAN® metering diaphragm with PTFE coating.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	3 kW	
		250-280 V/440-480 V	60 Hz		
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.3.2

Identity Code Ordering System M5Ma

Motor-driven metering pump M5Ma with mechanically deflected diaphragm

M5Ma	Drive t	ype												
	Н	Main driv	/e											
	D	Double n	nain driv	⁄e										
	Α	Add-on o	drive											
	В	Double a	dd-on d	lrive										
		Туре												
		041540	1											
		041900												
		042600												
		043400												
		044000												
			Liquid	end m	aterial									
			PC	PVC										
			PP	Polypr	opylene									
			SS	Stainle	ss steel									
			TT	PTFE -	+ 25% c	arbon								
		Sealing material												
				Т	PTFE									
					Displa	cement	body							
					Т	Pump	diaphrag	gm with	PTFE co	oating				
						Liquid	end ve	rsion						
						1	With va	alve spri	ngs, Ha	st. C; 0.	l bar			
							Hydra	ulic cor						
							0		ırd conn					
							1			and inse				
							2			nd inser				
							3			ut and ins				
							4	SS uni	on nut a	nd inser	t			
								Versio						
								0		oMinent				
								2		t ProMin				
								Α		oMinent				
								В		oMinent				
								С	with Pr	oMinent	® logo,	with frar	ne, triple	ex
								D		ProMinent® logo, with frame, quadruplex				
								М	Modifie					
										ical pow				
									S				Hz (WB	· ·
									R				•	30/400 V (R 1:5)
									Z					00 V, 50/60 Hz
									L				(Exe, E	xd)
									P	-	60 V 60			
									5				gearbo	
									6				2 gearbo	OX
									0		or, no g			
											ure rat		d) ISO d	Jaco C
										0	,	rsion A7	,	idss F
										2		rsion A		
										A		ower e		
										^				
											O Stroke	senso	r oke sens	eor
											1			nsor (Namur)
											l '			adjustment
												0		length adjustment, manual
												3		0-20 mA stroke controller
												4		4-20 mA stroke controller
												5		0-20 mA stroke controller
												6		I drive 115 V 4-20 mA
												_		designs, such as explosion-proof, on request
												I -	Applic	
													Applic 0	Standard
													3	Temperature up to -20 °C
														Tomporataro apito 20 O

000 m-

2.3.3 Spare Parts

Spare Parts Kits for Diaphragm Metering Pump Makro/ 5 HM

The replacement part kit in general includes wear parts for the liquid ends.

- 1 Metering diaphragm
- 1 Suction valve compl.
- 1 Discharge valve compl.
- 2 Valve plate and Hast. C spring
- 1 Seal kit complete (envelope rings, valve seat/valve seat bushing)

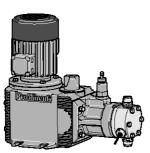
Liquid end		Order no.
FM 4000 PCT		1008172
FM 4000 PPT		1008171
FM 4000 TTT		1008173
FM 4000 SST	without valves cpl.	1008174

PTFE Metering Diaphragms

 ${\tt DEVELOPAN}^{\small @}\ diaphragm\ made\ of\ EPDM\ with\ woven\ fabric\ inlay,\ large-area,\ vulcanised\ aluminium\ core\ and\ PTFE-Teflon\ layer\ on\ the\ side\ in\ contact\ with\ the\ medium.$

	Order no.
Metering diaphragm for Makro/ 5 FM 4000	1009023

2.4 Hydraulic Diaphragm Metering Pump Hydro/ 2

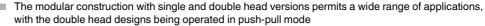

2.4.1

Hydraulic Diaphragm Metering Pump Hydro/ 2

For flexible metering with excellent process reliability in the medium pressure range. Capacity range of single pump: 3 – 72 l/h, 100 – 25 bar

As an extremely robust hydraulic diaphragm metering pump, the Hydro/2 meets the most exacting safety requirements. Its modular construction, with either one or two dosing heads, 4 gear ratios, 2 dosing head sizes and 3 dosing head materials, offers a very high degree of flexibility in terms of areas of application.

pk_2_074 Hydro

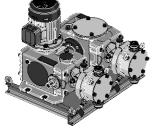

The Hydro/ 2 hydraulic diaphragm metering pump (HP2a) together with the Hydro/ 3 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 – 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 20-100% stroke volume range under defined conditions and with proper installation

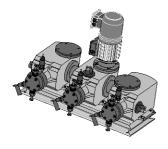
Excellent flexibility:


- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available

pk_2_073 Hydro double head pump

Technical Details

- Stroke length: 15 mm, Rod force: 2,000 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% in the 20 to 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electric diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others



P_HY_0040_SW1

Hydro externally mounted pump

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

2.4 Hydraulic Diaphragm Metering Pump Hydro/ 2

Technical Data

Type HP2a	Delive	ery ra	•	r at 50 Hz Max. stroke rate		800 rpm moto ivery rate at max. back pressure	or at 60 Hz Max. stroke rate	Suction lift	Perm. pre- pressure suction side	Connection on suction/ pressure side	Ship- ping weight	Plunger Ø
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	m WC	bar	G-DN	kg	mm
100003*	100	3	0.8	60	1,450	3,6/1.0	72	3.0	5	Rp 1/4*	31	16
100006*	100	6	0.8	125	1,450	7.0/1.8	150	3.0	5	Rp 1/4*	31	16
100007*	100	7	0.8	150	1,450	8.0/2.1	180	3.0	5	Rp 1/4*	31	16
100009*	100	9	0.8	187	1,450	11.0/2.9	224	3.0	5	Rp 1/4*	31	16
100010*	100	10	0.8	212	_		-	3.0	5	Rp 1/4*	31	16
064007	64	7	2.0	60	928	8.4/2.2	72	3.0	5	G 3/4-10	31	18
064015	64	15	2.0	125	928	18.0/4.8	150	3.0	5	G 3/4-10	31	18
064018	64	18	2.0	150	928	21.0/5.5	180	3.0	5	G 3/4-10	31	18
064022	64	22	2.0	187	928	26.0/6.9	224	3.0	5	G 3/4-10	31	18
064025	64	25	2.0	212	_		_	3.0	5	G 3/4-10	31	18
025019	25	19	5.3	60	362	23.0/6.1	72	3.0	5	G 3/4-10**	31	26
025040	25	40	5.3	125	362	48.0/12.7	150	3.0	5	G 3/4-10**	31	26
025048	25	48	5.3	150	362	58.0/15.3	180	3.0	5	G 3/4-10**	31	26
025060	25	60	5.3	187	362	72.0/19.0	224	3.0	5	G 3/4-10**	31	26
025068	25	68	5.3	212	-		-	3.0	5	G 3/4-10**	31	26

Version PVDF max. 25 bar.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂ (DN 15 – stainless steel 1.4404)	Ceramic
PVT*	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT	PTFE + 25 % carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} not for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Version SST/HCT with double ball valve, valve connector on the suction-pressure with female thread Rp 1/4 and external thread G 3/4 - DN 10

^{**} HV design with G1 - DN 15 connector

2.4 Hydraulic Diaphragm Metering Pump Hydro/ 2

2.4.2 Identity Code Ordering System HP2a

Hydro/ 2 (HP2a)

Drive	tvne													
H	Main driv	/e												
D			ole-hear	version	1									
E		Main drive, double-head version Main drive for add on drive												
F	Main driv				for add	-on driv	e							
Α	Add-on		o riedt		. ioi add	JII UIIV	•							
В			reion ad	d-on dri	VO									
T		-head version add-on drive												
'	Type*	omprisii	ing 3 power ends and 3 identical heads											
	Type	ı	bar	I/h				bar	I/h				bar	I/h
	100003		100	3		06400	7	64	7		025019	9	25	19
	100003		100	6		06401		64	15		025040		25	40
	100007		100	7		06401		64	18		025048		25	48
	100009		100	9		06402		64	22		025060		25	60
	100010		100	10		06402		64	25		025068		25	68
	100010	Liquid	end m			00402	<i>J</i>	0-7	20		020000	,	23	
		SS		ss steel										
		PV		(only fo		9 - 0250	68. 064	007 - 06	34025)					
		нс	Hastel				,		,					
		TT		+ 25% c	arbon									
				g mate										
			Т	PTFE										
					cemen	t bodv*								
				0	cement body* Standard multi-layer diaphragm with rupture signalling facility									
						iquid end version								
					0		ve sprin	gs (star	dard)					
					1	With va	alve spri	ngs	•					
					D	Double	ball va	lve (onl	y for SS	Γand H	CT)			
					Н	HV ver	sion (fo	r 02501	9 – 0250	60 only,	, for SST	only)		
						Hydra	ulic cor	nectio	n					
						0	Standa	ard threa	aded cor	nector				
						E	With D	IN ISO	flange					
							With A	NSI flar	ige					
							Version	n						
							0		roMinent	® logo		М	Modifi	ied
						1	1	withou	t ProMin	ent® log	go			
								Electr	ical pov	er sup	ply			
								S	3 ph, 2	30/400	V, 50/60	Hz, 0.37	7 kW	
								Т	3 ph, 2	30/400	V, 50/60	Hz, with	PTC	
								R	3 ph, V	ariable	speed m	notor, 230	0 V/40	0 V, 0.37 kW
								V (0)	Variabl	e speed	d motor v	with integ	grated	frequency converter
								Z	1 ph, V	ariable	speed co	ontrol se	t, 230	V, 50/60 Hz
								L	3 ph, 2	30/400	V, 50 Hz	(Exe, E	xd), 0.	37 kW
								Р	3 ph, 2	65/400	V, 60 Hz	(Exe, Ex	xd), 0.	37 kW
								V (2)	Variabl	e speed	d motor v	with integ	gr. freq	uency converter (Exd)
								1	no mot	or, with	motor fla	ange B 1	4, size	200
								3	no mot	or, with	motor fla	ange B5,	size 1	60
								4	no mot	or, with	motor fla	ange NE	MA 56	S C
								0	Add on	drive				
						1	1			ure rat				
									0	,	standard	,		
									1			ion ATE		
					1	1	1		2			rsion ATI	EX-T4	
1								1	Α	ATEX	power e	nd		
											e sensoi			
										0		ke sens	,	•
1								1		1	Stroke	sensor (for exp	olosion-proof applications)
											Stroke	length		
											0	Manual	•	•
											1			ositioning motor, 230 V/50/60 Hz
1								1			2			ositioning motor, 115 V/60 Hz
											Α			ontrol motor 020 mA 230 V/50/60 Hz
											В	With str	oke co	ontrol motor 420 mA 230 V/50/60 Hz
											С	With str	oke co	ontrol motor 020 mA 115 V/60 Hz
								D			ontrol motor 420 mA 115 V/60 Hz			
											Hydrau			
1					1	1	1				1		Stand	
		ĺ	1	Ì	Ī	Ī					1	1	Food	
												2	Low to	emperature to -25 °C
														emperature to -25 °C emperature Zone 2

* PVT max. 25 bar

Hydraulic Diaphragm Metering Pump Hydro/2

2.4.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- Diaphragm
- Valve balls
- Sealing set, complete

Scope of delivery with PVT material version

- Diaphragm
- Suction valve, complete
- Discharge valve, complete
- Valve balls
- Sealing set, complete

Spare parts kits for Hydro/ 2

Applies to identity code: Type 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007

Liquid end	Materials in contact with the medium		Order no.
FMH 25 - DN 10	PVT		1005548
	SST		1005549
	SST	for double ball valves	1029260
	HCT		1009571
	SST	with valves cpl.	1005550

Applies to identity code: Type 025068, 025060, 025048, 025040, 025019

Liquid end	Materials in contact with the medium		Order no.
FMH 60 - DN 10	PVT		1005552
	SST		1005553
	SST	for double ball valves	1005555
	HCT		1009573
	SST	with valves cpl.	1005554
	SST (HV-Ausführung)	with valves, complete (DN 15)	1019812

PTFE/1.4404 Metering Diaphragms for Hydro/ 2

Liquid end		Order no.
FMH 25	Applies to identity code (SST): 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007	1005545
FMH 60	Applies to identity code (SST): 026068, 025060, 025048, 025040, 025019	1005546

Diaphragms PTFE/Hastelloy C Coated for Hydro/ 2

Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

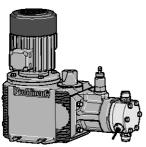
Base for Hydro hydraulic diaphragm metering pumps

	Order no.	
Base for Hydro/ 2, dimensions: 300 x 160 x 128 mm (LxWxH)	1005660	

1.1.2018

2.5 Hydraulic Diaphragm Metering Pump Hydro/ 3

2.5.1

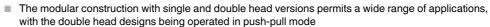

Hydraulic Diaphragm Metering Pump Hydro/ 3

For flexible metering with excellent process reliability in the medium pressure range.

Capacity range of single pump: 10 - 180 l/h, 100 - 25 bar

The Hydro/ 3 is an extremely robust hydraulic diaphragm metering pump. It meets the most exacting safety requirements. Its modular construction offers extremely good flexibility in terms of application, for example in the oil and gas industry.

pk_2_074 Hydro

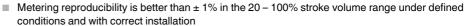

The Hydro/ 3 hydraulic diaphragm metering pump (HP3a) together with the Hydro/ 2 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 – 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 20-100% stroke volume range under defined conditions and with proper installation

Excellent flexibility:

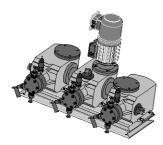

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

pk_2_073 Hydro double head pump

Technical Details

- Stroke length: 15 mm, Rod force: 4,200 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive)

- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others



P_HY_0040_SW1

Hydro externally mounted pump

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Hydraulic Diaphragm Metering Pump Hydro/ 3

Technical Data

Type HP3a	Deli max		rate at k	or at 50 Hz Max. stroke rate		00 rpm moto ivery rate at max. back pressure	r at 60 Hz Max. stroke rate	Suction lift	Perm. pre- pressure suction side	Connection suction/ discharge side	Shipping weight	Plunger Ø
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes /min	m WC	bar	G-DN	kg	mm
100010*	100	10	2.8	60	1,450	12/3.2	72	3.0	5	Rp 3/8–10*	41	22
100021*	100	21	2.8	125	1,450	25/6.6	150	3.0	5	Rp 3/8-10*	41	22
100025*	100	25	2.8	150	1,450	30/7.9	180	3.0	5	Rp 3/8-10*	41	22
100031*	100	31	2.8	187	1,450	37/9.8	224	3.0	5	Rp 3/8-10*	41	22
100035*	100	35	2.8	212	1,450		-	3.0	5	Rp 3/8–10*	41	22
064019	64	19	5.3	60	928	23/6.1	72	3.0	5	G 3/4-10**	41	26
064040	64	40	5.3	125	928	48/12.7	150	3.0	5	G 3/4-10**	41	26
064048	64	48	5.3	150	928	58/15.3	180	3.0	5	G 3/4-10**	41	26
064060	64	60	5.3	187	928	72/19.0	224	3.0	5	G 3/4-10**	41	26
064068	64	68	5.3	212	928		-	3.0	5	G 3/4-10**	41	26
025048	25	48	13.4	60	362	58/15.3	72	3.0	5	G 1–15***	41	38
025100	25	100	13.4	125	362	120/31.7	150	3.0	5	G 1-15***	41	38
025120	25	120	13.4	150	362	144/38,0	180	3.0	5	G 1–15***	41	38
025150	25	150	13.4	187	362	180/47.6	224	3.0	5	G 1-15***	41	38
025170	25	170	13.4	212	362		-	3.0	5	G 1–15***	41	38

Version PVDF max. 25 bar.

- Version SST/HCT with double ball valve, valve connector on the suction/discharge side with female thread Rp 3/8 and external thread G 3/4 - DN 10
- HV design (SST only) with G 1 DN 15 connector
- HV design (SST only) with 1 1/4" DN 20 connector

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂ (DN 15 – stainless steel 1.4404)	Ceramic
PVT*	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT	PTFE + 25 % carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} not for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	with PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.75 kW	with PTC, speed control range 1:20 with external fan 1 ph 230 V; 50/60 Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.75 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	with PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.75 kW	with PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.75 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information.

Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.5 Hydraulic Diaphragm Metering Pump Hydro/ 3

2.5.2

Identity Code Ordering System HP3a

Hydro/ 3 (HP3a)

HP3a	Drive t	type															
	Н	Main drive															
	D	Main drive, double-head version															
	E	Main drive for add-on drive															
	F	Main drive, double-head version for add-on drive															
			Add-on drive														
	A	Double-head version add-on drive Triplex comprising 3 power ends and 3 identical heads															
	В																
	Т																
		Type*															
				bar	l/h				bar	l/h				bar	l/h		
		100010		100	10		064019	9	64	19		025048	3	25	48		
		100021		100	21		064040		64	40		025100		25	100		
		100025		100	25		064048		64	48		025120		25	120		
												025120					
		100031		100	31		064060		64	60				25	150		
		100035		100	35		064068	3	64	68		025170	J	25	170		
					naterial												
			SS	Stainle	ess steel												
		PV PVDF (max. 25 bar, only for 025048 - 025170, 064019 - 064068)															
			HC	Hastel	loy C												
			TT	PTFE	+ 25% c	arbon											
					g mate												
				Т	PTFE	ilai											
							. la - al+										
						cemen		Lauran ali					£ = 1014.				
					0		ard multi-	•	apnragr	n with ru	ipture si	gnailing	tacility				
						Liquid	end ve										
						0	No valv	e sprin	gs (stan	dard)							
						1	With va	alve spri	ngs								
						D	Double	ball val	ve (for	100010-	100035	, 064019	9-06406	0, only	for SST and HCT)		
						Н	HV des	sian(for	064019	- 06406	0. 25048	3 - 2517	0. SST d	nlv)	•		
								• •	nectio					- ,			
							0			ided cor	nector						
							Ē		IN ISO f								
							F			•							
							F		NSI flan	ge							
								Versio									
								0		oMinent							
								1	withou	t ProMin	ent® log	jo					
								M	Modifie	ed							
									Electri	ical pov	er sup	ply					
									S	3 ph, 2	30/400	V, 50/60	Hz, 0.7	5 kW			
									Т	3 ph, 2	30/400	V, 50/60	Hz, with	n PTC			
									R						0 V, 0.75 kW		
									V (0)						frequency converter		
									Z					_	V, 50/60 Hz		
									L				(Exe, Ex				
									P								
													(Exe, Ex				
									V (2)						uency converter (Exd)		
									1		,		ange B 1	,			
									3	no mot	or, with	motor fla	ange B5	, size 1	60		
									4	no mot	or, with	motor fla	ange NE	MA 56	C		
									0	Add on	drive						
										Enclos	ure rat	ina					
										0		standard	d)				
										1			ion ATE	X-T3			
										2			sion ATE				
										A		oower e		.,, , ,			
										^							
											Stroke	senso			1 0		
											0		ke sens				
											1				plosion-proof applications)		
													length				
												0	Manua				
1												1			ositioning motor, 230 V/50/60 Hz		
1	1								2 With stroke positioning motor, 115 V/60 Hz								
	1									A With stroke control motor 0-20 mA 230 V/50/60 Hz							
												В			ontrol motor 4-20 mA 230 V/50/60 Hz		
												С			ontrol motor 0-20 mA 115 V/60 Hz		
												D			ontrol motor 0-20 mA 115 V/60 Hz		
												ا ا					
													Hydrai				
													0	Standa			
													1	Food	_		
													2	Low te	emperature to -25 °C		

* PVT max. 25 bar

2.5 Hydraulic Diaphragm Metering Pump Hydro/ 3

2.5.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- 1 Diaphragm
- 2 Valve balls
- 1 Sealing set, complete

Scope of delivery with PVT material version

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 1 Sealing set, complete

Spare parts kits for Hydro/ 3

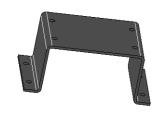
Applies to identity code: Type 100035, 100031, 100025, 100021, 100010, 064068, 064060, 064048, 064040, 064019

Liquid end	Materials in contact with the medium		Order no.
FMH 60 - DN 10	PVT		1005552
	SST		1005553
	SST	for double ball valves	1005555
	HCT		1009573
	SST	with valves cpl.	1005554
	SST (HV-Ausführung)	with valves, complete (DN 15)	1019812

Applies to identity code: Type 025170, 025150, 025120, 025100, 025048

Liquid end	Materials in contact with the medium		Order no.
FMH 150 - DN 15	PVT		1005556
	SST		1005557
	HCT		1009575
	SST	with valves cpl.	1005558
	SST (HV-Ausführung)	with valves, complete (DN 20)	1019824

Metering Diaphragm PTFE/1.4404 for Hydro/ 3


Liquid end		Order no.
FMH 60	Applies to identity code (SST) 064025, 064022, 064018, 064015, 064007, 100010, 100009, 100007, 100006, 100003	1005546
FMH 150	Applies to identity code (SST): 025170, 025150, 025120, 025100, 025048	1005547

Diaphragms PTFE/Hastelloy C Coated for Hydro/ 3

Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

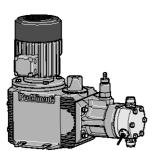
Base for Hydro hydraulic diaphragm metering pumps

	Order no.
Base for Hydro/ 3, dimensions: 324 x 180 x 128 mm (LxWxH)	1005661

2-28 Product Catalogue 2018 1.1.2018

2.6 Hydraulic Diaphragm Metering Pump Hydro/ 4

2.6.1


Hydraulic Diaphragm Metering Pump Hydro/ 4

For flexible metering with excellent process reliability in the medium pressure range.

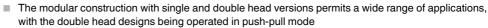
Capacity range of single pump: 130 - 1,450 l/h, 25 - 7 bar

The Hydro/ 4 is an extremely robust hydraulic diaphragm metering pump, which meets the most exacting safety requirements - it is equipped as standard with a pressure relief valve and PTFE multi-layer diaphragm with diaphragm rupture warning system. Its modular construction offers extremely good flexibility in terms of applications.

pk_2_074 Hydro

pk 2 073

Hydro double head pump


The Hydro/ 4 hydraulic diaphragm metering pump (HP4a) together with the Hydro/ 2 and Hydro/ 3 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 - 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

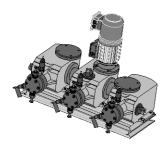
Your benefits

Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% in the 20-100% stroke volume range under defined conditions and with proper installation.

Excellent flexibility:

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request


- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control
- Metering reproducibility is better than ± 1% in the 20 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1

Hydro externally mounted pump

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Hydraulic Diaphragm Metering Pump Hydro/ 4

Technical Data

Type HP4a	With 1500	rpm mot	tor at 50 Hz	With 18	300 rpm moto	or at 60 Hz	Suction lift	Perm. pre- pressure	Connection suction/	Shipping weight	Plunger Ø
	_	rate at x. back ressure	Max. stroke rate	Deliv	very rate at max. back pressure	Max. stroke rate		suction side	discharge side		
	bar	l/h	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	m WC	bar	G-DN	kg	mm
250130	25	130	71	363	155/41	86	3	1	G 1 1/2-25	69	52
250190	25	190	103	363	230/61	124	3	1	G 1 1/2-25	69	52
250250	25	250	136	363	300/79	164	3	1	G 1 1/2-25	69	52
250350	25	350	188	363	420/111	225	3	1	G 1 1/2–25	69	52
250400	25	400	214	_		_	3	1	G 1 1/2-25	69	52
160210	16	210	71	232	250/66	86	3	1	G 1 1/2–25	76	63
160300	16	300	103	232	360/95	124	3	1	G 1 1/2-25	76	63
160400	16	400	136	232	480/127	164	3	1	G 1 1/2–25	76	63
160550	16	550	188	232	660/174	225	3	1	G 1 1/2-25	76	63
160625	16	625	214	_		-	3	1	G 1 1/2–25	76	63
100330	10	330	71	145	400/106	86	3	1	G 2–32	87	80
100480	10	480	103	145	580/153	124	3	1	G 2–32	87	80
100635	10	635	136	145	760/201	164	3	1	G 2–32	87	80
100880	10	880	188	145	1,050/277	225	3	1	G 2–32	87	80
101000	10	1,000	214	_		-	3	1	G 2–32	87	80
070465	7	465	71	102	560/148	86	3	1	G 2 1/4-40	96	94
070670	7	670	103	102	805/213	124	3	1	G 2 1/4-40	96	94
070890	7	890	136	102	1,070/283	164	3	1	G 2 1/4-40	96	94
071230	7	1,230	188	102	1,450/383	225	3	1	G 2 1/4-40	96	94
071400	7	1,400	214	-		-	3	1	G 2 1/4-40	96	94

Materials in Contact With the Medium

			DN 25	DN 25 ball valves			DN 32/DN 40 plate valves		
Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve	Seals	Valve plates/	Valve	
					seats		valve springs	seats	
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE	Stainless steel 1.4404	PTFE	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	
PVT*	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E-CTFE	PTFE	
HCT	Hast. C	Hast. C	PTFE	Hast. C	PTFE	PTFE	Hast. C / E-CTFE	PTFE	
TTT	PTFE + 25 % carbon	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E-CTFE	PTFE	

^{*} not for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	1.1 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	1.1 kW	With PTC, speed control range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed control range 1:20, with external fan 1 ph 230 V; 50/60 Hz
V0	3 ph, IP 55	400 V	50/60 Hz	1.5 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	1.1 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	1.1 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	1.1 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.6 Hydraulic Diaphragm Metering Pump Hydro/ 4

2.6.2

Identity Code Ordering System HP4a

Hydro/ 4 (HP4a)

HP4a	Drive	type														
	Н	Main driv														
	D		Main drive, double-head version													
	E F		Main drive for add-on drive Main drive, double-head version for add-on drive													
	A		Main drive, double-nead version for add-on drive Add-on drive													
	В	Add-on drive Double-head version add-on drive														
	T	Triplex co					identi	cal hea	ds							
		Type*	•													
			bar	l/h			bar	l/h			bar	l/h			bar	I/h
		250130	25	130		160210		210		100330		330		070465		465
		250190	25	190		160300		300		100480		480		070670 070890		670
		250250 250350	25 25	250 350		160400 160550		400 550		100635 100880		635 880		070890		890 1,230
		250400	25	400		160625		625		101000		1,000		071230		1,400
		200.00			materia		1.0	020		1.0.000	1.0	1,000		0.1.00	1 -	1,100
			SS		ess ste											
			PV	PVDF												
			HC	Haste	•											
			TT			carbon										
				T	ng mat PTFE	eriai										
						acement	hody									
					0	Standard		ayer di	aphrag	ım with ru	ipture :	signallii	ng faci	lity		
						Liquid e	nd ve	rsion				_	_	-		
						0				tandard)						
						1		alve sp								
							Hydra 0	aulic c		tion eaded co	nnooti	on				
							E			eaueu co) flange	milecu	UII				
							F		NSI fla	-						
								Versi		J -						
								0	with P	roMinen	® logo					
								1		ut ProMir						
								3 M			t [®] logo	, with e	electric	al overpr	essure	e display
								IVI	Modif	iea r ical pov	vor cu	anly				
									S	3 ph, 23			0 Hz, 1	1.1 kW		
									Т					with PTC		
									R	3 ph, va	riable s	speed r	notor,	230/400	V, 1.5	kW
														-		ency converter
									Z					set, 230		60 Hz
									L P					Exd), 1. Exd), 1.		
									-							converter (Exd)
									1	no moto				-	1001109	Convener (Exa)
									3				_	B5, size 2	200	
									4			motor f	flange	NEMA 14	13/145	TC
									0	Add on						
										Enclos 0		ing (standa	\rd\			
										1		•	,	ATEX-T3		
										2	-			ATEX-T4		
										Α		power				
												e sens				
											0			nsor (sta		
											1					n-proof applications)
												Strok 0		th adjust al (Stand		
												K		al (Stand al (outdo	,)
												1				ng motor, 230 V/50/60 Hz
												2				ng motor, 115 V/60 Hz
												Α				otor 0-20 mA 230 V/50/60 Hz
												В				otor 4-20 mA 230 V/50/60 Hz
												C				otor 0-20 mA 115 V/60 Hz
												D			itroi m	otor 4-20 mA 115 V/60 Hz
													Hydra 0	aulic oil Standar	d	
													1	Food gra		
													2	_		ure to -25 °C
		•														

* PVT max. 25 bar

2.6 Hydraulic Diaphragm Metering Pump Hydro/ 4

2.6.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- Diaphragm
- Valve balls
- Sealing set, complete

Scope of delivery with PVT material version

- Diaphragm
- Suction valve, complete
- Discharge valve, complete
- Valve balls
- Sealing set, complete

Spare parts kits for Hydro/ 4

Identity code 250130, 250190, 250250, 250350, 250400

Liquid end	Materials in contact with the medium		Order no.
FMH 400 - DN 25	PVT		1043763
	PVT	with valve	1023057
	SST		1040812
	SST	with valve	1040813
	HCT		1040860

Identity code 160210, 160300, 160400, 160550, 160625

Liquid end	Materials in contact with the medium		Order no.
FMH 625 - DN 25	PVT		1043775
	PVT	with valve	1040863
	SST		1040824
	SST	with valve	1040825
	HCT		1040861

Identity code 100330, 100480, 100635, 100880, 101000

Liquid end	Materials in contact with the medium		Order no.
FMH 1000 - DN 32	PVT		1043776
	PVT	with valve	1040866
	SST		1040826
	SST	with valve	1040827
	HCT		1040864

Identity code 0704650, 070670, 070890, 071230, 071400

Liquid end	Materials in contact with the medium		Order no.
FMH 1400 - DN 40	PVT		1043777
	PVT	with valve	1040869
	SST		1040828
	SST	with valve	1040829
	HCT		1040867

2.6 Hydraulic Diaphragm Metering Pump Hydro/ 4

Metering Diaphragm PTFE/1.4404 for Hydro/ 4

Liquid end		Order no.
FMH 400	Identity code (SST) 250130, 250190, 250250, 250350, 250400	1040808
FMH 625	Identity code (SST) 160210, 160300, 160400, 160550, 160625	1040809
FMH 1000	Identity code (SST) 100330, 100480, 100635, 100880, 101000	1040810
FMH 1400	Identity code (SST) 0704650, 070670, 070890, 071230, 071400	1040811

Diaphragms PTFE/Hastelloy C Coated for Hydro/ 4

Liquid end		Order no.
FMH 400	Identity code (HCT) 250130, 250190, 250250, 250350, 250400	1040874
FMH 625	Identity code (HCT) 160210, 160300, 160400, 160550, 160625	1040875
FMH 1000	Identity code (HCT) 100330, 100480, 100635, 100880, 101000	1040876
FMH 1400	Identity code (HCT) 0704650, 070670, 070890, 071230, 071400	1040877

Base for Hydro hydraulic diaphragm metering pumps

P_PZ_0010_SW1

Order no. Base for Hydro/ 4, dimensions: 344 x 250 x 120 mm (LxWxH) 1051421

Process Metering Pumps

Hydraulic Diaphragm Metering Pump Makro/5

Hydraulic Diaphragm Metering Pump Makro/ 5

Excellent feed rates in the low pressure range

Capacity range of single pump: 450 - 6,108 l/h, 25 - 6 bar

The robust hydraulic diaphragm metering pump Makro/ 5 guarantees outstanding process reliability. Its modular construction offers extremely good flexibility and a large range of power end versions are available.

pk_2_096 Makro/ 5 M5Ha

The Makro/ 5 hydraulic diaphragm metering pump (M5Ha) together with the Makro/ 5 diaphragm and plunger metering pumps form an integrated product range with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320 – 4 bar. A wide range of drive versions is available,

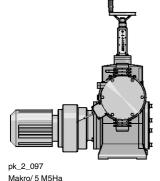
including some for use in Exe and Exde areas with ATEX certification. The Makro/ 5 product range is

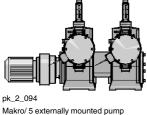
Excellent process safety and reliability:

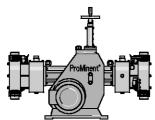
designed to comply with API 675 among others.

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 10-100% stroke length range under defined conditions and with correct installation.

Excellent flexibility:

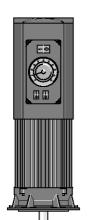

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request


Technical Details


- Stroke length: 0 50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100% н
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, special materials are available on
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips



Makro/ 5 double head pump

Hydraulic Diaphragm Metering Pump Makro/ 5

pk_2_103 Variable speed motor with integrated frequency converter

Control of Makro/5 Hydraulic Diaphragm Metering Pumps

Makro/ 5 stroke length controller

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Actuating period approx. 100 sec for 100% stroke length, including 2 limit switches for min./max. position, IP 54 degree of protection. Electrical connection 230 V (±10%), 50/60 Hz, 40 W mechanical stroke length display fitted on the Makro/ 5 power end.

Special voltage/higher degrees of protection/explosion protection on request.

Standard signal current input 0/4-20 mA, corresponds to stroke length 0 - -100%; internal switch for manual /automatic operation, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. motor power 0.37/0.75/1.1 kW.

Externally controllable with 0/4-20 mA or 0-10 V corresponding to 0-50 (60) Hz output frequency.

Frequency Converters for Speed Control See page → 1-82

Stroke sensor with Namur signal

Mounting on the crank drive mechanism of the Makro/ 5 gearbox. For precise measurement of each metering stroke, comprising electronic cams and inductive proximity switches, switching signal according to Namur. In combination with electronic pre-selection meters suitable for batch metering or proportional metering in conjunction with proportional control.

Retrospective fitting only possible in the factory.

Approved for Ex safety operation with degree of protection EEx ia II C T6.

Process Metering Pumps

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

Technical Data

Type M5Ha	W	/ith 150	0 rpm mo	tor at 50 Hz	١	With 180	00 rpm mo	otor at 60 Hz	Suction lift	Connection suction/	Shipping weight	Plunger Ø		
	Delivery rate at max. Max.			Deliv	•	e at max.	Max.		discharge side					
	_	•		back pressure					•	stroke rate				
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	m WC	G-DN	kg	mm		
250450	25	450	125.0	60	362	537	142	72	3.0	G 2–32	320	60		
250562	25	562	125.0	75	362	671	177	89	3.0	G 2-32	320	60		
250772	25	772	125.0	103	362	922	244	123	3.0	G 2-32	320	60		
250997	25	997	125.0	133	362	1,191	315	159	3.0	G 2-32	320	60		
251170	25	1,170	125.0	156	_	-	_	-	_	G 2-32	320	60		
160616	16	616	171.2	60	232	736	194	72	3.0	G 2 1/4-40	320	70		
160770	16	770	171.2	75	232	920	243	89	3.0	G 2 1/4-40	320	70		
161058	16	1,058	171.2	103	232	1,264	334	123	3.0	G 2 1/4-40	320	70		
161366	16	1,366	171.2	133	232	1,633	431	159	3.0	G 2 1/4-40	320	70		
161602	16	1,602	171.2	156	-	-	-	-	3.0	G 2 1/4-40	320	70		
120716	12	716	199.0	60	174	855	226	72	3.0	G 2 1/4-40	320	75		
120895	12	895	199.0	75	174	1,069	282	89	3.0	G 2 1/4-40	320	75		
121229	12	1,229	199.0	103	174	1,469	388	123	3.0	G 2 1/4-40	320	75		
121588	12	1,588	199.0	133	174	1,898	501	159	3.0	G 2 1/4-40	320	75		
121862	12	1,862	199.0	156	_	-	_	-	3.0	G 2 1/4-40	320	75		
120919	12	919	255.3	60	174	1,098	290	72	3.0	G 2 1/4-40	320	85		
121148	12	1,148	255.3	75	174	1,372	362	89	3.0	G 2 1/4-40	320	85		
121577	12	1,577	255.3	103	174	1,885	498	123	3.0	G 2 1/4-40	320	85		
122037	12	2,037	255.3	133	174	2,435	643	159	3.0	G 2 1/4-40	320	85		
122389	12	2,389	255.3	156	-	2,856	754	-	3.0	G 2 1/4-40	320	85		
101345	10	1,345	374.0	60	145	1,607	425	72	3.0	G 2 3/4-50	330	100		
101680	10	1,680	374.0	75	145	2,008	530	89	3.0	G 2 3/4-50	330	100		
102310	10	2,310	374.0	103	145	2,761	729	123	3.0	G 2 3/4-50	330	100		
102980	10	2,980	374.0	133	145	3,562	941	159	3.0	G 2 3/4-50	330	100		
103500	10	3,500	374.0	156	-	-	_	-	3.0	G 2 3/4-50	330	100		
062305	6	2,305	641.0	60	87	2,755	728	72	3.0	flange-65*	330	130		
062880	6	2,880	641.0	75	87	3,443	910	89	3.0	flange-65*	330	130		
063960	6	3,960	641.0	103	87	4,734	1,251	123	3.0	flange-65*	330	130		
065110	6	5,110	641.0	133	87	6,108	1,614	159	3.0	flange-65*	330	130		
066000	6	6,000	641.0	156	_	-	-	-	3.0	flange-65*	330	130		

Material Version PPT/PCT/TTT max. 10 bar

Materials in Contact With the Medium

			DN 32/	DN50/DN65 plat	e valves		DN 40 _I		
	Dosing head	Suction/pressure valve	Seals	Valve plates/ valve springs	Valve seats		Seals	Valve plates	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Hast. C	PTFE	PPE	EPDM	Hast. C	PTFE
PCT	PVC	PVC	PTFE	Hast. C	PTFE	PCA	Viton®	Hast. C	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Hast. C	PTFE	TTT	PTFE	Hast. C	PTFE
SST	Stainless steel material no. 1.4571/1.4404	Stainless steel material no. 1.4571/1.4404	PTFE	Hast. C	PTFE	SST	PTFE	Hast. C	PTFE

Patented multi-layer diaphragm, vacuum-packed Special designs available on request Viton® is a registered trademark of DuPont Dow Elastomers

^{*} SST version with G 2 1/2" thread

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

2.7.2

Identity Code Ordering System for M5Ha

Motor-driven metering pump M5Ha

М5На	Drive t	type														
	Н	Main dri	ive													
	Α	Add-on		er end												
1	D	Double	•													
	В															
			auu-c	add-on power end												
		Type*	ı	100010		100710		100010		101015		000005				
		250450		160616		120716		120919		101345		062305				
		250562		160770		120895		121148		101680		062880				
		250772		161058		121229		121577		102310		063960				
		250997		161366		121588		122037		102980		065110				
		251170		161602		121862		122389		103500		066000				
				iid end n	nateri	al										
				PVC												
			PP	Polypro												
			SS	Stainles												
			TT	PTFE +	25%	carbon										
				Sealing												
				Т	PTFI	E										
					Disp	lacemer										
					Т	Compos	ite dia	aphragm,	PTFE	coating, v	vith ru	ıpture indi	cator			
						Liquid 6	end v	ersion								
						1	With	valve spr	ings							
							Hyd	raulic co	nnect	ion						
							0	Standard	d conn	ection						
							1	PVC unio	on nut	and inser	t					
							2	Union nu	t and	insert PP						
							3	PVDF ur	ion nu	ut and inse	ert					
							4	SS unior	nut a	nd insert						
								Version								
								0	with	ProMinen	® log	o, no fram	е			
								2				logo, no fr				
								Α	with	ProMinen	® log	o, with frai	me, si	implex		
								В	with ProMinent® logo, with frame, duplex							
								С	with ProMinent® logo, with frame, triplex							
								D						uadruplex		
								M	Modi		·			·		
									Elec	trical pov	ver sı	vlagu				
									S			V 50/60 H	lz (W	BS)		
									R	Variable	spee	d motor 4-	pole.	230/400 V		
									V (0)	I	•	egr. freque				
									L `´			V 50 Hz (•			
									Р			V 60 Hz (·		
									V (2)					converter (Exd)		
									5 ′			n gearbox	-			
									6			n gearbox				
									0	No moto		-				
										Enclosu		_				
1									l	0		(Standar	d) ISC	O class F		
1									l	1		version A7	,			
									l	2		version A7				
										Α	ATE	X power e	nd			
												ke senso				
									l		0	No stroke		sor		
									l		1			nsor (Namur)		
									l					n adjustment		
									l			0		ke length adjustment, manual		
									l			3		V 0-20 mA stroke controller		
1	1	1							l			4		V 4-20 mA stroke controller		
1						i	1		l			5		V 0-20 mA stroke controller		
										1				V O EO IIIA ONONO OOTHI OHOI		
												6	115	V 4-20 mA stroke controller		
												6		V 4-20 mA stroke controller		
												6	Appl	lication		
												6	App l 0	lication Standard		
												6	Appl	lication		

^{*} Material version PC/PP/TT max. 10 bar

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10%	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

2.7.3 Spare Parts

The spare parts kits generally contain the consumable components for the liquid ends.

- 1 metering diaphragm
- 1 suction valve set
- 1 discharge valve set
- 1 seal set (O-rings, packing rings, valve seat, valve seat housings)

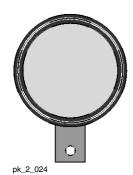
Spare Parts Kits for Makro/ 5 HMH

Identity code: 250450, 250562, 250772, 250997, 251170

Liquid end	Materials in contact with the medium		Order no.	
FMH 60-50	S	with 2 valves cpl.	1008170	
	S	without valves cpl.	1008169	

Identity code: 160616, 160770, 161058, 161366, 161602, 120716, 120895, 121229, 121588, 121862, 120919, 121148, 121577, 122037, 122389

Liquid end	Materials in contact with the medium				
FMH 70/75/85-50	PPT		911904		
	PCT		911902		
	TTT		911906		
	SST		911910		
	SST	without valves cpl.	911909		


Identity code: 101345, 101680, 102310, 102980, 103500

Liquid end	Materials in contact with the medium		Order no.
FMH 100-50	PP		1008246
	Р		1008247
	Т		1008248
	S	with valves cpl.	1008250
	S	without valves cpl.	1008249

Identity code: 062305, 062880, 063960, 065110, 066000

Liquid end	Materials in contact with the medium		Order no.
FMH 130-50	PP		1008251
	Р		1008252
	Т		1008253
	S	with valves cpl.	1008265
	S	without valves cpl.	1008264

Metering Diaphragms for Makro/ 5 HMH

Liquid end	Order no.
FMH 60/70/75/85-50	1007298
FMH 100/130-50	1007852

1.1.2018 Product Catalogue 2018 2-39

Hydraulic Diaphragm Metering Pump Orlita® **Evolution 1**

2.8.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 1

Maximum process reliability and flexibility.

Capacity range of single pump: 3 - 511 l/h; 400 - 8 bar

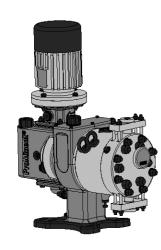
The Orlita® Evolution 1 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control. Its modular construction offers extremely good flexibility in terms of applications.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 I/h at 400 - 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

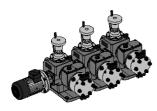
Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation


- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details


- Stroke length: 0 15 mm, rod force: 2,300 N
- Stroke length range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 1 % within the 10 100 % stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials:
 - Stainless steel 1.4404, special designs available on request plastics PVC, PVDF, special designs available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 etc.

Field of application

- Oil and gas industry
- Metering of reactants and catalysts in the chemical industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

68 52-101 00 01-0a-Evo1 SW1 Orlita® Evolution EF1a

P PZ 0008 SW1 Orlita® Evolution triplex pump

2.8 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 1**

Technical data for EF1a single pump 50 Hz SST

Plunger Ø	Stroke volume	The	Theoretical pump capacity in I/h at strokes/min (50 Hz)							Efficiency at	, ,	Standard type of
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
8	0.75	3.3	4.4	5.2	6.6	7.5	8.2	9.1	400	0.43	0.69	DN 3
10	1.18	5.2	6.9	8.2	10.2	11.7	12.8	14.2	293	0.61	0.79	DN 3
12	1.70	7.4	9.9	11.8	14.8	16.8	18.4	20.5	203	0.77	0.86	DN 3
14	2.31	10.1	13.4	16.1	20.1	22.9	25.1	27.8	149	0.62	0.80	DN 6
17	3.40	14.9	19.8	23.7	29.6	33.7	36.9	41.0	101	0.77	0.88	DN 6
21	5.20	22.8	30.3	36.2	45.2	51.5	56.5	62.7	66	0.85	0.89	DN 10
25	7.36	32.2	42.8	51.2	64.0	72.9	79.9	88.8	47	0.90	0.93	DN 10
29	9.91	43.4	57.7	69.0	83.2	98.1	107.6	119.5	35	0.95	0.96	DN 10
32	12.06	52.8	70.2	83.9	104.9	119.4	131.0	145.4	29	0.89	0.93	DN 10
38	17.01	74.5	99.0	118.4	148.0	168.4	184.7	205.1	20	0.93	0.95	DN 10
44	22.81	99.9	132.8	158.8	198.4	225.8	247.7	275.1	15	0.94	0.96	DN 16
50	29.45	129.0	171.4	205.0	256.2	291.6	319.9	355.2	12	0.95	0.96	DN 16
58	39.63	173.6	230.6	275.8	344.8	392.3	430.4	477.9	9	0.95	0.97	DN 16

Technical data for EF1a single pump 60 Hz SST

Plunger Ø	Stroke volume	Theoretical pump capacity in I/h at strokes/min (60 Hz)				Max. pressure	Efficiency at	Efficiency at	Standard type of	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
8	0.75	4.0	5.3	6.3	7.9	9.0	400	0.43	0.69	DN 3
10	1.18	6.2	8.3	9.9	12.4	14.1	293	0.61	0.79	DN 3
12	1.70	9.0	11.9	14.3	17.8	20.3	203	0.77	0.86	DN 3
14	2.31	12.2	16.2	19.4	24.3	27.6	149	0.62	0.80	DN 6
17	3.40	18.0	23.9	28.6	35.7	40.6	101	0.77	0.88	DN 6
21	5.20	27.5	36.5	43.7	54.6	62.1	66	0.85	0.89	DN 10
25	7.36	38.9	51.7	61.8	77.3	87.9	47	0.90	0.93	DN 10
29	9.91	52.3	69.6	83.2	104.1	118.3	35	0.95	0.96	DN 10
32	12.06	63.7	84.7	101.3	126.6	144.0	29	0.89	0.93	DN 10
38	17.01	89.8	119.4	142.9	178.6	203.1	20	0.93	0.95	DN 10
44	22.81	120.4	160.1	191.6	239.5	272.4	15	0.94	0.96	DN 16
50	29.45	155.5	206.7	247.4	309.2	351.6	12	0.95	0.96	DN 16
58	39.63	209.2	278.2	332.9	416.1	473.2	9	0.95	0.97	DN 16

Note:

Abridged presentation of our complete product range. Other piston diameters (8–60 mm) on request

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel	Stainless steel 1.4462	PTFE multi-layer diaphragm

Ball valve DN 3 - DN 10

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 3 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 16

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing	
DN 16	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404	

Hydraulic Diaphragm Metering Pump Orlita® **Evolution 1**

Technical data for EF1a single pump 50 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theo	oretical	oump ca _l	pacity in	I/h at stro	Max. pressure	Efficiency at	Efficiency at	Standard type of valve		
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
8	0.75	3.3	4.4	5.2	6.6	7.5	8.2	9.1	16	0.65	0.70	DN 6
10	1.18	5.2	6.9	8.2	10.2	11.7	12.8	14.2	16	0.81	0.88	DN 6
12	1.70	7.4	9.9	11.8	14.8	16.8	18.5	20.5	16	0.79	0.82	DN 6
21	5.20	22.8	30.2	36.2	45.2	51.4	56.4	62.7	16	0.81	0.84	DN 10
25	7.36	32.3	42.9	51.2	64.1	72.9	80.0	88.8	16	0.84	0.87	DN 10
29	9.91	43.4	57.7	69.0	86.2	98.1	107.6	119.5	16	0.86	0.89	DN 10
44	22.81	99.9	132.8	158.8	198.4	225.8	247.7	275.1	10	0.94	0.96	DN 16
50	29.45	129.0	171.4	205.0	256.2	291.6	319.9	355.2	10	0.95	0.96	DN 16
60	42.41	185.8	246.8	295.2	369.0	419.9	460.6	511.5	8	0.96	0.97	DN 16

Technical data for EF1a single pump 60 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theoretical	pump capa	city in I/h at	t strokes/mi	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
8	0.75	4.0	5.3	6.3	7.9	9.0	16	0.65	0.70	DN 6
10	1.18	6.2	8.3	9.9	12.4	14.1	16	0.81	0.88	DN 6
12	1.70	9.0	11.9	14.3	17.9	20.3	16	0.79	0.82	DN 6
21	5.20	27.5	36.5	43.7	54.6	62.1	16	0.81	0.84	DN 10
25	7.36	38.9	51.7	61.8	77.3	87.9	16	0.84	0.87	DN 10
29	9.91	52.3	69.6	83.2	104.1	118.3	16	0.86	0.89	DN 10
44	22.81	120.4	160.1	191.6	239.5	272.4	10	0.94	0.96	DN 16
50	29.45	155.5	206.7	247.4	309.2	351.6	10	0.95	0.96	DN 16
60	42.41	223.9	297.7	356.2	445.3	506.4	8	0.96	0.97	DN 16

Note:

Abridged presentation of our complete product range. Other piston diameters (8 - 60 mm) on request. Other pressures (16 and/or 21 bar) on request.

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
PVC	Stainless steel 2.4610	PTFE
PVDF	Stainless steel 2.4610	PTFE

Ball valve DN 6 - DN 10

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 6 (single ball)	PVDF	PTFE moulded composite	Al ₂ O ₃ ceramic	PTFE	PVDF	PVDF
DN 10 (single ball)	PVDF	PTFE moulded composite	Al ₂ O ₃ ceramic	PTFE	PVDF	PVDF

Plate valve DN 16

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing
DN 16	PVDF	PTFE	ZrO ₂ ceramic	PTFE	PVDF

Hydraulic Diaphragm Metering Pump Orlita® **Evolution 2**

2.9.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 2

Maximum process reliability and flexibility.

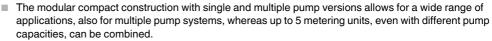
Capacity range of single pump: 6 - 900 l/h; 400 - 11 bar

The Orlita® Evolution 2 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

68 52-101 00 01-0a-Evo2 SW1 Orlita® Evolution EF2a

P PZ 0008 SW1

Orlita® Evolution triplex pump

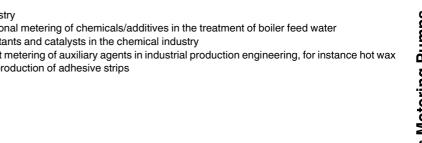

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 I/h at 400 - 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation

Excellent flexibility:


- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details

- Stroke length: 0 15 mm, rod force: 5,400 N
- Stroke length range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10 100 % stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- - Stainless steel 1.4404, special designs available on request plastics PVC, PVDF, special designs available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 etc.

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.9 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 2

Technical data for EF2a single pump 50 Hz SST

Plunger Ø					Max. pressure	Efficiency at	Efficiency at	Standard type of				
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
12	1.70	7	10	12	15	17	18	21	400	0.69	0.82	DN 3
14	2.31	10	13	16	20	22	25	28	351	0.35	0.67	DN 6
17	3.40	15	20	24	30	34	37	41	238	0.60	0.79	DN 6
21	5.20	23	30	36	45	51	56	53	156	0.75	0.85	DN 10
25	7.36	32	43	51	64	73	80	89	110	0.83	0.89	DN 10
29	9.91	43	58	69	86	98	108	120	82	0.90	0.93	DN 10
32	12.06	53	70	84	105	119	131	145	67	0.76	0.87	DN 10
38	17.01	75	99	118	148	168	185	205	48	0.87	0.92	DN 10
44	22.81	100	133	159	198	226	248	275	36	0.90	0.94	DN 16
50	29.45	129	171	205	256	292	320	355	28	0.91	0.95	DN 16
58	39.63	174	231	276	345	392	430	478	20	0.93	0.96	DN 16
70	57.73	253	336	402	502	572	627	696	14	0.94	0.96	DN 20

Technical data for EF2a single pump 60 Hz SST

Plunger Ø	Stroke volume	Theoretical pump capacity in I/h at stro		okes/min (60 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of		
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50% pressure	
	stroke							pressure		
12	1.70	9	12	14	18	20	400	0.69	0.82	DN 3
14	2.31	12	16	19	24	28	351	0.35	0.67	DN 6
17	3.40	18	24	29	36	41	238	0.60	0.79	DN 6
21	5.20	27	37	44	55	62	156	0.75	0.85	DN 10
25	7.36	39	52	62	77	88	110	0.83	0.89	DN 10
29	9.91	52	70	83	104	118	82	0.90	0.93	DN 10
32	12.06	64	85	101	127	144	67	0.76	0.87	DN 10
38	17.01	90	119	143	179	203	48	0.87	0.92	DN 10
44	22.81	120	160	192	240	272	36	0.90	0.94	DN 16
50	29.45	155	207	247	309	352	28	0.91	0.95	DN 16
58	39.63	209	278	333	416	473	20	0.93	0.96	DN 16
70	57.73	305	405	485	606	689	14	0.94	0.96	DN 20

Note:

Abridged presentation of our complete product range. Other piston diameters (11 - 80 mm) on request.

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm	
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm	

Ball valve DN 3 - DN 10

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 3 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 16 - DN 20

	Suction/pressure	Valve/head seal	Valve plate	Valve seat	Valve housing
	connector				
DN 16/DN 20	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Process Metering Pumps

2.9 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 2

Technical data for EF2a single pump 50 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theo	Theoretical pump capacity in I/h at strokes/min (50 Hz)						Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
11	1.43	6	8	10	12	14	16	17	16	0.66	0.72	DN 6
12	1.70	7	10	12	15	17	18	21	16	0.79	0.82	DN 6
21	5.20	23	30	36	45	51	56	63	16	0.81	0.84	DN 10
25	7.36	32	43	51	64	73	80	89	16	0.84	0.87	DN 10
29	9.91	43	58	69	86	98	108	120	16	0.86	0.89	DN 10
44	22.81	100	133	159	198	226	248	275	10	0.94	0.96	DN 16
50	29.45	129	171	205	256	292	320	355	10	0.95	0.96	DN 16
60	42.41	186	247	295	369	420	460	511	8	0.96	0.97	DN 16

Technical data for EF2a single pump 60 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theoretical	pump capa	acity in I/h a	t strokes/m	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
11	1.43	8	10	12	15	17	16	0.66	0.72	DN 6
12	1.70	9	12	14	18	20	16	0.79	0.82	DN 6
21	5.20	27	37	44	55	62	16	0.81	0.84	DN 10
25	7.36	39	52	62	77	88	16	0.84	0.87	DN 10
29	9.91	52	70	83	104	118	16	0.86	0.89	DN 10
44	22.81	120	160	192	240	272	10	0.94	0.96	DN 16
50	29.45	155	207	247	309	352	10	0.95	0.96	DN 16
60	42.41	224	298	356	445	506	8	0.96	0.97	DN 16

Note:

Abridged presentation of our complete product range. Other piston diameters on request. Other pressure stages (e.g. 21 bar) on request.

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
PVC	Stainless steel 2.4610	PTFE
PVDF	Stainless steel 2.4610	PTFE

Ball valve DN 6 - DN 10

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 6 (single ball)	PVDF	PTFE moulded composite	Al ₂ O ₃ ceramic	PTFE	PVDF	PVDF
DN 10 (single ball)	PVDF	PTFE moulded composite	Al ₂ O ₃ ceramic	PTFE	PVDF	PVDF

Plate valve DN 16

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 16	PVDF	PTFE	ZrO ₂ ceramic	PTFE	PVDF

Process Metering Pumps

2.10 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 3**

2.10.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 3

Maximum process reliability and flexibility.

Capacity range of single pump: 21 - 1,330 l/h, 400 - 18 bar

The Orlita® Evolution 3 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 I/h at 400 - 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm layer control protects against impermissible operating statuses (e.g. no damage in the event of a blockage on the suction or discharge side)
- Continuous bleeding of the oil chamber ensures reliable operation

Excellent flexibility:

- The modular construction with single and multiple pump versions permits a wide range of applications. In multiple pump systems up to 5 metering units can be combined, including units with different pump capacities
- 7 different gear ratios are available; in single pumps the drive arrangement can be either vertical or
- Customised designs are available on request

Technical Details

- Stroke length: 0 25 mm, rod force: 8,000 N
- Stroke length range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10 100 % stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials:
 - Stainless steel 1.4404, special designs available on request plastics PVC, PVDF, special designs available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 etc.

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_ORL_063_SW1 Orlita® Evolution EF3a

P PZ 0008 SW1 Orlita® Evolution triplex pump

ProMinent

2.10 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 3

Technical data for EF3a single pump 50 Hz SST

Plunger Ø									Max. pressure	Efficiency at	Efficiency at	Standard type of
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
17	5.67	24	32	39	49	56	61	68	352	0.68	0.83	DN 6
22	9.50	41	55	66	82	93	103	114	210	0.87	0.93	DN 6
25	12.27	53	71	85	106	121	133	148	163	0.86	0.92	DN 10
30	17.67	77	102	123	174	192	192	213	113	0.92	0.95	DN 10
34	22.70	99	132	158	197	225	247	274	88	0.90	0.94	DN 16
38	28.35	123	164	197	247	280	308	343	71	0.93	0.95	DN 16
44	38.01	165	220	265	331	376	413	459	53	0.95	0.97	DN 20
50	49.09	214	285	342	427	485	534	593	41	0.97	0.98	DN 20
58	66.05	287	383	460	575	653	718	798	30	0.98	0.99	DN 20
63	77.93	341	454	542	678	772	846	940	26	0.97	0.98	DN 25
70	96.21	419	558	670	837	951	1,046	1,163	21	0.98	0.98	DN 25
75	110.45	480	640	768	960	1,091	1,201	1,334	18	0.98	0.98	DN 25

Technical data for EF3a single pump 60 Hz SST

Plunger Ø	volume		okes/min (60 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of valve			
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
17	5.67	29	39	47	59	67	352	0.68	0.83	DN 6
22	9.50	50	67	80	100	113	210	0.87	0.93	DN 6
25	12.27	64	86	103	129	146	163	0.86	0.92	DN 10
30	17.67	93	124	148	186	211	113	0.92	0.95	DN 10
34	22.70	120	159	191	238	271	88	0.90	0.94	DN 16
38	28.35	149	198	238	298	338	71	0.93	0.95	DN 16
44	38.01	200	266	319	399	454	53	0.95	0.97	DN 20
50	49.09	258	344	412	515	585	41	0.97	0.98	DN 20
58	66.05	347	462	555	694	788	30	0.98	0.99	DN 20
63	77.93	411	547	655	818	930	26	0.97	0.98	DN 25
70	96.21	505	673	808	1,010	1,148	21	0.98	0.98	DN 25
75	110.45	580	773	927	1,159	1,317	18	0.98	0.98	DN 25

Note:

Abridged presentation of our complete product range. Other piston diameters (14 - 75 mm) on request

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm

Ball valve DN 6 - DN 10

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SIN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 16 - DN 25

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 16/DN 25	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

2.10 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 3**

Technical data for EF3a single pump 50 Hz PVC/PVDF

Plunger Stroke Volume Theoretical pump capacity in I/h at strokes/min (50 Hz)					Max. pressure	Efficiency at	Efficiency at	Standard type of valve				
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
										pressure	pressure	
63	77.93	339	452	542	678	770	848	942	10	0.95	0.96	DN 25
67	88.14	386	513	613	767	873	957	1,063	10	0.95	0.96	DN 25
70	96.21	419	558	670	837	951	1,046	1,163	10	0.96	0.97	DN 25
75	110.45	480	641	769	961	1.092	1.201	1,335	10	0.97	0.98	DN 25

Technical data for EF3a single pump 60 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theoretica	ıl pump capa	Max. pressure	Efficiency at	Efficiency at	Standard type of valve			
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
								pressure	pressure	
63	77.93	409	546	655	818	930	10	0.95	0.96	DN 25
75	110.45	583	775	928	1,160	1,319	10	0.97	0.98	DN 25
67	88.14	465	619	740	925	1,052	10	0.95	0.96	DN 25
70	96.21	505	673	808	1,010	1,148	10	0.96	0.97	DN 25

Note:

Abridged presentation of our complete product range. Other piston diameters on request. Other pressure stages (e.g. 16 bar) on request.

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
PVC	2.4610	PTFE
PVDF	2.4610	PTFE

Plate valve

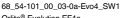
	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 25	PVDF	PTFE	ZrO ₂ ceramic	PTFE	PVDF

2.11 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 4**

Hydraulic Diaphragm Metering Pump Orlita® Evolution 4

Maximum process reliability and flexibility.

Capacity range of single pump: 55 - 7,400 l/h, 400 - 10 bar


The Orlita® Evolution 4 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 – 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675. Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation

Excellent flexibility:

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

P PZ 0008 SW1 Orlita® Evolution triplex pump

Orlita® Evolution EF4a

Technical Details

- Stroke length: 0 40 mm, rod force: 15,700 N
- Stroke length range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10 100 % stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- - Stainless steel 1.4404, special designs available on request plastics PVC, PVDF, special designs available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 etc.

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Minent

2.11 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 4

Technical data for EF4a single pump 50 Hz SST

Plunger Ø	Stroke volume	Theo	oretical	pump ca	pacity in	I/h at stro	okes/min	(50 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
22	15.21	67	89	106	132	151	165	183	400	0.71	0.84	DN 16
25	19.63	86	114	137	171	194	213	237	320	0.72	0.85	DN 16
30	28.27	124	165	197	246	280	307	341	222	0.73	0.85	DN 16
34	36.32	159	211	253	316	360	394	438	172	0.80	0.87	DN 16
38	45.36	199	264	316	395	449	493	547	138	0.86	0.90	DN 20
44	60.82	266	354	423	529	602	661	733	103	0.90	0.92	DN 20
50	78.54	344	457	547	683	778	853	947	80	0.93	0.94	DN 32
60	113.10	495	658	787	984	1,120	1,228	1,364	55	0.94	0.95	DN 32
70	153.94	674	896	1,071	1,339	1,524	1,672	1,857	40	0.94	0.95	DN 40
75	176.71	774	1,028	1,230	1,537	1,749	1,919	2,131	35	0.95	0.96	DN 40
86	232.35	1,018	1,352	1,617	2,021	2,300	2,523	2,802	27	0.96	0.97	DN 50
90	254.47	1,115	1,481	1,771	2,214	2,519	2,764	3,069	24	0.96	0.97	DN 50
100	314.16	1,376	1,828	2,187	2,733	3,110	3,412	3,789	20	0.97	0.98	DN 50
110	380.13	1,665	2,212	2,646	3,307	3,763	4,128	4,584	16	0.98	0.98	DN 50
115	415.48	1,820	2,418	2,892	3,615	4,113	4,512	5,011	15	0.98	0.99	DN 65
130	530.93	2,325	3,090	3,695	4,619	5,256	5,766	6,403	12	0.99	0.99	DN 65
140	615.75	2,697	3,584	4,286	5,357	6,096	6,687	7,426	10	0.99	0.99	DN 65

Technical data for EF4a single pump 60 Hz SST

Plunger Ø	Stroke volume	Theoretical	pump capa	acity in I/h a	t strokes/m	in (60 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
22	15.21	80	107	128	160	182	400	0.71	0.84	DN 16
25	19.63	104	138	165	206	234	320	0.72	0.85	DN 16
30	28.27	149	198	237	297	337	222	0.73	0.85	DN 16
34	36.32	192	255	305	381	434	172	0.80	0.87	DN 16
38	45.36	240	318	381	476	542	138	0.86	0.90	DN 20
44	60.82	321	427	511	639	726	103	0.90	0.92	DN 20
50	78.54	415	551	660	825	938	80	0.93	0.94	DN 32
60	113.10	597	794	950	1,188	1,350	55	0.94	0.95	DN 32
70	153.94	813	1,081	1,293	1,616	1,838	40	0.94	0.95	DN 40
75	176.71	933	1,241	1,484	1,855	2,110	35	0.95	0.96	DN 40
86	232.35	1,227	1,631	1,952	2,440	2,774	27	0.96	0.97	DN 50
90	254.47	1,344	1,786	2,138	2,671	3,038	24	0.96	0.97	DN 50
100	314.16	1,659	2,205	2,639	3,299	3,751	20	0.97	0.98	DN 50
110	380.13	2,007	2,669	3,193	3,991	4,539	16	0.98	0.98	DN 50
115	415.48	2,194	2,917	3,490	4,363	4,961	15	0.98	0.99	DN 65
130	530.93	2,803	3,727	4,460	5,575	6,339	12	0.99	0.99	DN 65
140	615.75	3,251	4,323	5,172	6,465	7,352	10	0.99	0.99	DN 65

Note:

Abridged presentation of our complete product range. Other piston diameters (14 - 75 mm) on request

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm

Plate valve

	Suction/ pressure connector	Valve/ head seal	Valve plate	Valve seat	Valve housing
DN 16 – DN 65	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

2.11 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 4**

Technical data for EF4a single pump 50 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theo	retical _l	oump cap	oacity in	I/h at stro	Max. pressure	Efficiency at	Efficiency at	Standard type of valve		
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
70	153.94	674	896	1,071	1,339	1,524	1,672	1,857	10	0.94	0.95	DN 40
86	232.35	1,018	1,352	1,617	2,021	2,300	2,523	2,802	10	0.96	0.97	DN 50
110	380.13	1,665	2,212	2,646	3,307	3,763	4,128	4,584	10	0.98	0.98	DN 50
140	615.75	2,697	3,584	4,286	5,357	6,096	6,687	7,426	10	0.99	0.99	DN 65

Technical data for EF4a single pump 60 Hz PVC/PVDF

Plunger Ø	Stroke volume	Theoretica	l pump capa	acity in I/h a	t strokes/m	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
70	153.94	813	1,081	1,293	1,616	1,838	10	0.94	0.95	DN 40
86	232.35	1,227	1,631	1,952	2,440	2,523	10	0.96	0.97	DN 50
110	380.13	2,007	2,669	3,193	3,991	4,539	10	0.98	0.98	DN 50
140	615.75	3,251	4,323	5,172	6,465	7,352	10	0.99	0.99	DN 65

Note:

Abridged presentation of our complete product range. Other piston diameters on request. Other pressure stages (16 and/or 21 bar) on request.

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
PVC	2.4610	PTFE
PVDF	2.4610	PTFE

Plate valve

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 40 – DN 65	PVDF	PTFE	ZrO ₂ ceramic	PTFE	PVDF

Process Metering Pumps

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

2.12.1

Hydraulic Diaphragm Metering Pump Orlita® MF

Reliable capacity even at high pressure

Capacity range of single pump: 0 - 13,000 l/h, 700 - 6 bar

The hydraulic diaphragm metering pump Orlita® MF offers reliable capacities even under high pressure and has a modular construction, therefore has versatile uses. Thanks to its modular design, this pump is tailored to meet your requirements even at very high pump capacities.

ORLITA® MF hydraulic diaphragm metering pumps (MFS 18 to MFS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 13,000 l/h at 700 - 6 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

- PTFE double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation despite high pressures
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)

Excellent flexibility:

- The modular construction allows a wide range of uses. In multiple pump systems it is possible to combine up to 6 metering units, even with different pump capacities. In single pumps the drive arrangement may be either vertical or horizontal.
- 10 different gear ratios are available
- Temperature range -40 to +150 °C
- Customised designs are available on request

Technical Details

- MfS 18 (MF1a) Stroke length: 0-15 mm, Rod force: 1,750 N
- MfS 35 (MF2a) Stroke length: 0-20 mm, Rod force: 3,500 N
- MfS 80 (MF3a) Stroke length: 0-20 mm, Rod force: 14,000 N
- MfS 180 (MF4a) Stroke length: 0-40 mm, Rod force: 18,000 N
- MfS 600 (MF5a) Stroke length: 0-40 mm, Rod force: 40,000 N
- MfS 1400 (MF6a) Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 150 °C
- Suction lift up to 8 m
- Design in compliance with API 675 among others

Field of application

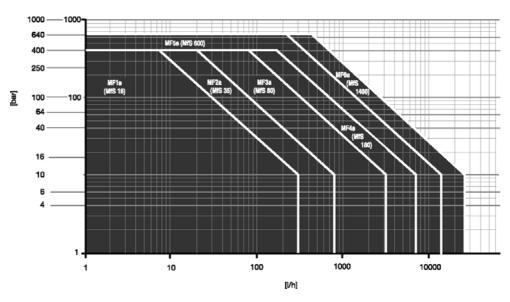
- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)

P ORL 050 SW1 Orlita® MFS 18/12

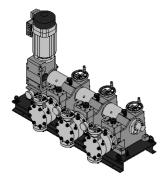
P ORL 051 SW1 Orlita® MFS 35/30

P ORL 052 SW1 Orlita® MFS 80/40

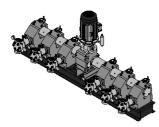
P ORL 053 SW1 Orlita® MFS 180/60



P_ORL_054_SW1 Orlita® MFS 600b/81


P ORL 055 SW1 Orlita® MFS 1400/46

Pressure [bar] depending on the metering volume [l/h] at 50 Hz


Triplex Metering Pumps

P_ORL_056_SW1 Orlita® MF3S 180/90-90-90 triplex pump

With triplex metering pumps, the pressure stroke of each liquid end occurs through 120° of crank travel. This results in a metering flow free of pulsation without the use of elaborate pulsation dampers. This design of process diaphragm pump is preferred in the chemical and petrochemical industries.

Multiplexed Metering Pumps

P_ORL_057_SW1 Orlita® MF3S 1400/50 multiple pump

The Orlita® MF range's modular construction permits a variable combination of drives, motors and liquid ends e.g. quadruple MF metering pumps with central drive.

P_ORL_058_SW1 Orlita® MFS 18 with 1-phase control drive 115/230 V

P_ORL_059_SW1 Orlita® MFS 35 with 1-phase control drive 115/230 V vertical

P_ORL_060_SW1
Orlita® MFS 180 with 3-phase control drive

P_ORL_061_SW1
Orlita® MFS 35/12-12-12 with control drives

P_ORL_062_SW1 Orlita® MFS 18/7 with Varicon

Actuation of ORLITA® MF, MH, PS, DR

Control drive consisting of an actuator with servo motor and integral servo controller for stroke length adjustment via a standard signal. Standard signal current input 0/4 – 20 mA, corresponds to stroke length 0 – 100%, switch for manual/automatic operation; key switch for stroke adjustment in manual mode, mechanical status display of actual stroke length value output 0/4 – 20 mA for remote display. Control drives can also be designed with bus systems, like HART, PROFIBUS, Fieldbus Foundation ...

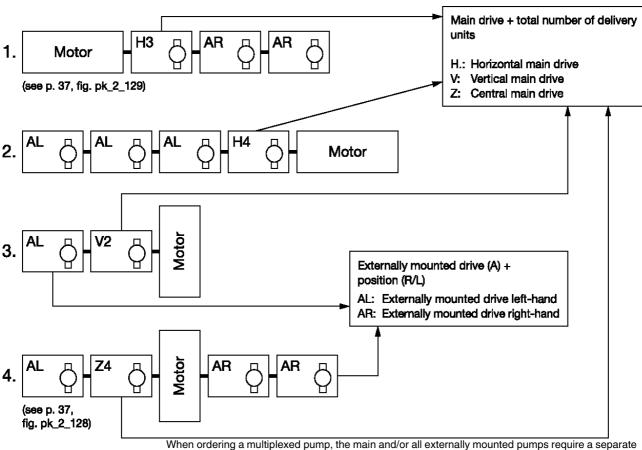
Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1 ph 230 V, 50/60 Hz (up to 3 kW). Externally controllable with 0/4 - 20 mA.

The following functions are integrated in the terminal box cover:

- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode

Speed controllers with frequency converter (identity code specification Z)


The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. 0.37/0.75 kW motor capacity.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Integrated control unit with versatile functions, such as switching between external/internal control; frequency input using arrow keys with internal control, multilingual fault message display etc. and motor temperature monitoring (thermistor protection).

The speed controller assembly consists of a frequency converter and a variable speed motor.

Type of drive

Identity code.

For example a triplex pumpe (1.): MF_aH3..... MF_aAR.....

MF_aAR.....

Materials in Contact With the Medium

	Liquid end	Suction/discharge valve housing	Valve seals	Valve	Valve seat	Range
S1 (DIN)	1.4404	None	1.4571	Ceramic	1.4404	DN 3
S1 (ANSI)	A 316 L	N/A	A 316 Ti	Ceramic	A 316 L	
S1 (DIN)	1.4404	1.4404	1.4571	1.4462	1.4462	≥ DN6
S1 (ANSI)	A 316 L	A 316 L	A 316 Ti	Duplex SS	Duplex SS	
S2 (DIN)	1.4462	1.4462	1.4571	1.4462	1.4462	≥ DN6
S2 (ANSI)	Duplex SS	Duplex SS	A 316 Ti	Duplex SS	Duplex SS	
S3 (DIN)	1.4539	1.4539	2.4610	1.4539	1.4539	≥ DN6
S3 (ANSI)	A904L	A904L	Hastelloy C-4	A904L	A904L	

Motor Data

Α	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
B (adjustable 1:5)	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
Н	60 Hz	3 ph. 220/380 V	3 ph. 400 V	
K (adjustable 1:5)	60 Hz	3 ph. 220/380 V	3 ph. 400 V	

2.12.2

Orlita® MFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 18 Single Pump 50 Hz

Plunger Ø	Stroke volume	F	Pump ca		•••	n per pun ode char	-	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.58	1.5	2.0	2.5	3.1	3.8	5.0	7.1	400	0.50	0.70	DK DN 3
8	0.75	2.0	2.6	3.2	4.1	5.0	6.5	9.3	348	0.55	0.72	DK DN 3
10	1.18	3.2	4.1	5.1	6.4	7.8	10.2	14.6	222	0.67	0.79	Ke DN 6
11	1.43	3.8	4.9	6.2	7.7	9.5	12.4	17.7	184	0.67	0.79	Ke DN 6
12	1.70	4.6	5.9	7.3	9.2	11.3	14.7	21.0	154	0.84	0.88	Ke DN 6
14	2.31	6.2	8.0	10.0	12.5	15.4	20.0	28.7	113	0.85	0.88	Ke DN 6
16	3.02	8.2	10.5	13.1	16.4	20.1	26.2	37.4	87	0.86	0.88	Ke DN 6
18	3.82	10.3	13.2	16.6	20.7	25.5	33.2	47.4	68	0.87	0.88	Ke DN 6
20	4.71	12.8	16.4	20.5	25.6	31.5	41.0	58.5	55	0.88	0.89	Ke DN 6
22	5.70	15.5	19.8	24.8	31.0	38.1	49.6	70.8	46	0.88	0.89	Ke DN 10/6
25	7.36	20.0	25.6	32.0	40.0	49.2	64.0	91.5	35	0.89	0.89	Ke DN 10
27	8.59	23.3	29.8	37.3	46.7	57.4	74.7	106.7	30	0.89	0.89	Ke DN 10
29	9.91	26.9	34.4	43.1	53.8	66.3	86.2	123.1	26	0.89	0.89	Ke DN 10
30	10.60	28.8	36.9	46.1	57.6	70.9	92.2	131.7	24	0.89	0.89	Ke DN 10
36	15.27	41.5	53.1	66.4	83.0	102.1	132.8	189.7	17	0.89	0.89	Ke DN 16
40	18.85	51.2	65.6	82.0	102.4	126.1	163.9	234.2	13	0.89	0.89	Ke DN 16
44	22.81	62.0	79.3	99.2	124.0	152.6	198.4	283.4	11	0.89	0.90	Ke DN 16
50	29.45	80.0	102.4	128.1	160.1	197.1	256.2	366.0	8	0.89	0.90	Ke DN 16

Technical Data MfS 18 Single Pump 60 Hz

Plunger Ø	Stroke volume	P	ump ca				np head a	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.58	1.5	1.9	2.4	3.0	3.8	4.6	6.1	400	0.50	0.70	DK DN 3
8	0.75	1.9	2.4	3.1	3.9	4.9	6.1	7.9	348	0.55	0.72	DK DN 3
10	1.18	3.1	3.8	4.9	6.2	7.7	9.5	12.4	222	0.67	0.79	Ke DN 6
11	1.43	3.7	4.7	6.0	7.5	9.4	11.5	15.0	184	0.67	0.79	Ke DN 6
12	1.70	4.4	5.6	7.1	8.9	11.2	13.7	17.9	154	0.84	0.88	Ke DN 6
14	2.31	6.1	7.6	9.7	12.1	15.2	18.7	24.3	113	0.85	0.88	Ke DN 6
16	3.02	7.9	9.9	12.7	15.9	19.9	24.5	31.8	87	0.86	0.88	Ke DN 6
18	3.82	10.0	12.6	16.1	20.1	25.1	31.0	40.3	68	0.87	0.88	Ke DN 6
20	4.71	12.4	15.5	19.9	24.8	31.1	38.2	49.7	55	0.88	0.89	Ke DN 6
22	5.70	15.0	18.8	24.0	30.1	37.6	46.3	60.2	46	0.88	0.89	Ke DN 10/6
25	7.36	19.4	24.3	31.1	38.8	48.6	59.8	77.7	35	0.89	0.89	Ke DN 10
27	8.59	22.6	28.3	36.2	45.3	56.6	69.7	90.6	30	0.89	0.89	Ke DN 10
29	9.91	26.1	32.7	41.8	52.3	65.3	80.4	104.6	26	0.89	0.89	Ke DN 10
30	10.60	27.9	34.9	44.7	55.9	69.9	86.1	111.9	24	0.89	0.89	Ke DN 10
36	15.27	40.3	50.3	64.4	80.6	100.7	124.0	161.2	17	0.89	0.89	Ke DN 16
40	18.85	49.7	62.2	79.6	99.5	124.4	153.1	199.0	13	0.89	0.89	Ke DN 16
44	22.81	60.2	75.2	96.3	120.1	150.5	185.2	240.8	11	0.89	0.90	Ke DN 16
50	29.45	77.7	97.1	124.4	155.5	194.3	239.2	311.0	8	0.89	0.90	Ke DN 16

DK Double ball valve, Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

Allow for a minimum 10% power reserve when designing in accordance with API

All hydraulic performance data is based on water at 20 °C

Process Metering Pumps

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS18 (MF1a) hydraulic diaphragm metering pump

V1	Main o	lrive verti	cal*				AR	Drive mo	dule r	ight-har	nd																
Z1		lrive cent					M Modified **																				
AL	Drive r	nodule le	ft-hand				•	•																			
	Pluna	er diame	ter																								
	007	7 mm		011	11 mm		016	16 mm		022	22 mm		029	29 mm		040	40 mm										
	800	8 mm		012	12 mm		018	18 mm		025	25 mm		030	30 mm		044	44 mm										
	010	10 mm		014	14 mm		020	20 mm		027	27 mm		036	36 mm		050	50 mm										
		Stroke	rate 50	(60) H	z						•																
		2	-/44 s	trokes/n	nin	4		Strokes/		6	91 (110				8		6) Strokes/n										
		3	,	5) stroke		5		Strokes/		7	112 (13	5) Stro	kes/min		9	207 (-) \$	Strokes/min										
								e materi	als)																		
			S1		ss steel (
				0	erature o			aium	3	I 10 °C	to 115 °C	,															
				1	-25 °C 1				4		to 150 °C																
				2	-40 °C 1				l ¬	100	10 150 C	•															
				-	Displac																						
					0 1			yer diaph	ragm																		
								yer diaph		vith pre	ssure gau	ige															
							d end v					-															
						0	Standa				2	Stanc	lard dou	uble valve													
							Standa	ard with sp	oring		3	Stanc	lard dou	uble valve	with s	pring											
								ulic conr			on side																
							G N	Thread N Hydrauli G N	,	-		Α	Flange														
												D		DIN/ISO	1												
												rge sid		151-	A N I C !												
										d DIN/I			A	Flange		0											
										Thread NPT/ANSI Version Ino features		ANSI D		Flange I	אווע/וט												
									versi 0					2	Hiani	d end poli	shed										
									1					3	Liquid end polished Special paint finish												
											r connector					p. 20114 11											
																		A	Standar		ge 50 H	lz					
													1		В			_	z adjusta	ble							
																					Н	Standar	d volta	ge 60 H	lz		
																	1		K			_	lz adjusta	ble			
										0	Externa	-	-	-													
										1	without			-													
										2				MA flange		•											
											Electric 0	al pro	tection	system /	explo	osion pro IP 55 EB											
											1	IP 56			D	IP 56 E											
											A	IP 55	FFxn		E	IP 56 E											
											В	IP 55			F	IP 56 E											
											1		rical or	otions	1.	I 22 Er											
								1				0	no opt														
												1		sensor													
													Strok	e length a	adjust	tment											
								1					0	manual	-												
								1					1	0/4-20 n													
													2	0/4-20 n													
								1					3	0/4-20 n			"										
								1					4			hout EX of											
													5			Zone 2 of											
													6			Zone 1 of											
														_		al conditi											
														0		C to 40 °C											
												2 0 °C to 55 °C				,											
														۲		rovals											
								1						1	Appi 0	rovais ICE											
															1	API 675											
															2	VDMA											
															3	ATEX											
															4	ATEX /	API 675										
1	1														5	VDMA /											

^{*}For other pump configurations see Type of drive page \rightarrow 2-55

0000

^{**} Modified version (M) is possible for each ID character of the identity code.

2.12.3

Orlita® MFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 35 Single Pump 50 Hz

Plunger Ø	Stroke volume	ı	Pump ca			h per pun ode char		Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.6	3.3	4.1	5.1	6.7	9.5	400	0.50	0.70	DK DN 3
8	1.01	2.7	3.5	4.3	5.4	6.7	8.7	12.4	400	0.50	0.70	DK DN 3
10	1.57	4.2	5.4	6.8	8.5	10.5	13.6	19.5	400	0.50	0.70	Ke DN 6
11	1.90	5.1	6.6	8.2	10.3	12.7	16.5	23.6	368	0.79	0.85	Ke DN 6
12	2.26	6.1	7.8	9.8	12.3	15.1	19.6	28.1	309	0.79	0.85	Ke DN 6
14	3.08	8.3	10.7	13.3	16.7	20.6	26.7	38.2	227	0.81	0.85	Ke DN 6
16	4.02	10.9	13.9	17.4	21.8	26.9	34.9	49.9	174	0.83	0.86	Ke DN 6
18	5.09	13.8	17.7	22.1	27.6	34.0	44.2	63.2	137	0.84	0.87	Ke DN 6
20	6.28	17.0	21.8	27.3	34.1	42.0	54.6	78.0	111	0.86	0.88	Ke DN 6
22	7.60	20.6	26.4	33.0	41.3	50.8	66.1	94.4	92	0.86	0.88	Ke DN 10/6
25	9.82	26.6	34.1	42.7	53.3	65.7	85.4	122.0	71	0.87	0.88	Ke DN 10
27	11.45	31.1	39.8	49.8	62.2	76.6	99.6	142.3	61	0.87	0.88	Ke DN 10
30	14.14	38.4	49.2	61.5	76.8	94.6	122.9	175.7	49	0.88	0.89	Ke DN 10
36	20.36	55.3	70.8	88.5	110.6	136.2	177.1	253.0	34	0.88	0.89	Ke DN 16
40	25.13	68.3	87.4	109.3	136.6	168.2	218.6	312.3	27	0.89	0.89	Ke DN 16
44	30.41	82.6	105.8	132.2	165.3	203.5	264.5	377.9	23	0.89	0.89	Ke DN 16
50	39.27	106.7	136.6	170.8	213.5	262.8	341.6	488.0	17	0.89	0.89	Ke DN 16
60	56.55	153.7	196.7	245.9	307.4	378.4	491.9	702.8	12	0.89	0.90	Ke DN 16/25
65	66.37	180.4	230.9	288.6	360.8	444.1	577.3	824.8	10	0.89	0.90	Ke DN 16/25
80	100.53	273.3	349.8	437.3	546.6	672.7	874.6	1,249.4	6	0.89	0.90	Ke DN 25

Technical Data MfS 35 Single Pump 60 Hz

Plunger	Stroke	I	Pump ca	apacity	Q _{th} in I/I	h per pur	np head	at H/min	Max.	Efficiency	Efficiency	Standard type
Ø	volume			[ld	lentity c	ode char	acteristic	c 2 to 8]:	pressure	at	at	of valve
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.5	3.2	4.0	5.0	6.2	8.1	400	0.50	0.70	DK DN 3
8	1.01	2.6	3.3	4.2	5.3	6.6	8.1	10.6	400	0.50	0.70	DK DN 3
10	1.57	4.1	5.1	6.6	8.2	10.3	12.7	16.5	400	0.50	0.70	Ke DN 6
11	1.90	5.0	6.2	8.0	10.0	12.5	15.4	20.0	368	0.79	0.85	Ke DN 6
12	2.26	5.9	7.4	9.5	11.9	14.9	18.3	23.8	309	0.79	0.85	Ke DN 6
14	3.08	8.1	10.1	13.0	16.2	20.3	25.0	32.5	227	0.81	0.85	Ke DN 6
16	4.02	10.6	13.2	16.9	21.2	26.5	32.6	42.4	174	0.83	0.86	Ke DN 6
18	5.09	13.4	16.7	21.5	26.8	33.5	41.3	53.7	137	0.84	0.87	Ke DN 6
20	6.28	16.5	20.7	26.5	33.1	41.4	51.0	66.3	111	0.86	0.88	Ke DN 6
22	7.60	20.0	25.0	32.1	40.1	50.1	61.7	80.2	92	0.86	0.88	Ke DN 10/6
25	9.82	25.9	32.4	41.4	51.8	64.8	79.7	103.6	71	0.87	0.88	Ke DN 10
27	11.45	30.2	37.7	48.3	60.4	75.5	93.0	120.9	61	0.87	0.88	Ke DN 10
30	14.14	37.3	46.6	59.7	74.6	93.3	114.8	149.2	49	0.88	0.89	Ke DN 10
36	20.36	53.7	67.1	85.9	107.4	134.3	165.3	214.9	34	0.88	0.89	Ke DN 16
40	25.13	66.3	82.9	106.1	132.7	165.8	204.1	265.4	27	0.89	0.89	Ke DN 16
44	30.41	80.2	100.3	128.4	160.5	200.7	247.0	321.1	23	0.89	0.89	Ke DN 16
50	39.27	103.6	129.5	165.8	207.3	259.1	318.9	414.6	17	0.89	0.89	Ke DN 16
60	56.55	149.2	186.6	238.8	298.5	373.2	459.3	597.1	12	0.89	0.90	Ke DN 16/25
65	66.37	175.2	219.0	280.3	350.4	438.0	539.1	700.8	10	0.89	0.90	Ke DN 16/25
80	100.53	265.4	331.7	424.6	530.8	663.5	816.6	1,061.6	6	0.89	0.90	Ke DN 25

DK Double ball valve,

Ke Conical valve

- Important note: Abridged presentation of our complete product range. Other types on request
 - Allow for a minimum 10% power reserve when designing in accordance with API
 - All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System

Orlita® MFS35 (MF2a) hydraulic diaphragm metering pump

3	
AL Drive module left-hand Plunger diameter 100 12 12 mm 020 20 mm 030 30 mm 050 50 mm 060 80 mm 010 10 mm 016 16 mm 025 25 mm 040 40 mm 065 65 mm 060 10 mm 011 11 mm 018 18 mm 027 27 mm 044 44 mm 080 80 mm 08	
Plunger diameter	
007 7 mm	
007 7 mm	
10 mm	
11 mm	
Stroke rate 50 (60) Hz 2	
2	
3	
Liquid end material (including valve materials) St Stainless steel (see table, sheet 2) Temperature of pumped medium	Strokes/min
Stainless steel (see table, sheet 2) Temperature of pumped medium 0 -10°C to 80°C 2 40°C to 60°C 4 10°C to 150°C 1 -25°C to 60°C 3 10°C to 115°C Displacer format 0 PTFE multi-layer diaphragm 1 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard with spring 2 Standard + double valve with spring 3 Standard + double valve with spring 4 Flange ANSI 1 Standard with spring 3 Standard + double valve with spring 4 Flange ANSI 1 Standard with spring 3 Standard + double valve with spring 6 Flange ANSI 1 Standard with spring 3 Standard + double valve with spring 6 Flange ANSI 1 Standard with spring 3 Flange ANSI Flange ANSI 1 Flange ANSI D Flange DIN/ISO 1 Flange ANSI Flange DIN/ISO 1 Flange DIN/ISO Flan	okes/min
Temperature of pumped medium	
1	
1 -25 °C to 60 °C 3 10 °C to 115 °C Displacer format 0 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard with spring 2 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 1 Standard with spring 3 Standard + double valve with sprin 2 Standard with spring 3 Standard + double valve with sprin 3 Standard with spring 3 Standard + double valve with sprin 4 Flange ANS D Flange ANS 5 Flange ANS D Flange DIN/ISO 8 Standard with spring 3 Standard voltage spring 9 Standard with spring 3 Standard voltage spring 1 Standard with spring 3 Standard voltage spring 1 Standard with spring 3 Standard voltage spring 1 Standard with spring 4 S	
Displacer format	
0 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard 1 Standard with spring 3 Standard + double valve with spring Hydraulic connection suction side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread NPT/ANSI D Flange DIN/ISO Version 0 no features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz Standard voltage 50 Hz K Standard voltage 50 Hz adjustable H Standard voltage 50 Hz adjustable H Standard voltage 60 Hz adjustable C Externally mounted pump 1 without motor with IEC flange without motor with NEMA flange Electrical protection system / explosion 0 IP 55 1 IP 56 EExxe K IP 6 A IP 55 EExxe K IP 6 B IP 55 EExxe K IP 6 C	
PTFE multi-layer diaphragm with pressure gauge	
Liquid end version 0 Standard 2 Standard + double valve with spring 3 Standard + double valve with spring 3 Standard + double valve with spring 4 Standard + double valve with spring 5 Standard + double valve with spring 5 Standard valle 5 Standard spring 5 Standard spring 5 Standard valle 5 Standard v	
Standard 2 Standard + double valve Standard + double valve Standard + double valve with spring 3 Standard + double valve with spring Hydraulic connection suction side G Thread DIN/ISO D Flange ANSI Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO A Flange ANSI Flange DIN/ISO Version D Flange DIN/ISO Flange DIN/ISO Version D Flange DIN/ISO Flange DIN/ISO Version D Flange DIN/ISO Version D Flange DIN/ISO Power connector A Standard voltage 50 Hz Standard voltage 50 Hz B Standard voltage 60 Hz K Standard voltage 60 Hz K Standard voltage 60 Hz K Standard voltage 60 Hz Standard voltage 60 Hz Standard voltage 60 Hz Standard voltage 60 Hz Flange D Flange	
Standard with spring 3 Standard + double valve with spring Hydraulic connection suction side G Thread DINI/SO D Flange ANSI D Flange DINI/SO Hydraulic connection discharge side G Thread DINI/SO A Flange ANSI D Flange DINI/SO Hydraulic connection discharge side G Thread DINI/SO A Flange ANSI D Flange DINI/SO Version D Flange DINI/SO D Flange DINI/SO D Flange DINI/SO Version D Flange DINI/SO D Flange DINI/SO D Flange DINI/SO D Flange DINI/SO Version D Flange DINI/SO D Fl	
Hydraulic connection suction side G Thread DIN/ISO D Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO A Flange ANSI D Flange DIN/ISO Version U no features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz B Standard voltage 60 Hz adjustable H Standard voltage 60 Hz adjustable C Sternally mounted pump 1 without motor with IEC flange without motor with NEMA flange Electrical protection system / explosion 0 IP 55 D IP 5 1 IP 56 E IP 6 A IP 55 EExn F IP 6 B IP 55 EExe K IP 6 C IP 55 EExe K IP 6 Electrical options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 1 0/4-20 mA without 1 0/4-20 mA without 1 0/4-20 mA without	1
G Thread NPT/SNS D Flange ANSI Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Version D Flange DIN/ISO P Flange DIN/ISO D Flange DIN/ISO P Flange DIN/ISO D Flange DIN/ISO P Flange DIN/ISO P Flange DIN/ISO P Flange DIN/ISO D Flange DIN/ISO P Flange DIN	,
N Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Version 0 no features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz A Standard voltage 60 Hz K Standard voltage 60 Hz B Standard voltage 60 Hz C IP 55 EExe C IP 50 EXE C IP 50 EExe C IP 50 EExe C IP 50 EExe C IP 50 EExe C IP 50 EXE C IP 50 EExe C IP 50 EExe C IP 50 EExe C IP 50 EExe C IP 50 EXE C IP 50 EExe C IP 50 EExe C IP 50 EExe C IP 50 EExe C IP 50 EXE C IP 5	
Hydraulic connection discharge side G Thread DIN/ISO A Flange ANSI N Thread NPT/ANSI D Flange DIN/ISO Version 0 no features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz adjustable C Externally mounted pump 1 without motor with IEC flange without motor with NEMA flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 1 IP 56 Exp F IP 5 A IP 55 EExp K IP 6 B IP 55 EExp K IP 6 C IP 55 EExp	
G Thread DIN/ISO A Flange ANSI Thread NPT/ANSI D Flange DIN/ISO Version 0 no features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz adjustable H Standard voltage 60 Hz adjustable H Standard voltage 60 Hz adjustable O Externally mounted pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 Exx F IP 5 B IP 55 EExe K IP 6 Electrical options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 1 0/4-20 mA without 1 0/4-20 mA without 1 0/4-20 mA intout 1 0/4-20 mA without 2 0/4-20 mA Ex Zone 1 Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone 1 Stroke length adjustment 0 manual 1 0/4-20 mA Ex Zone 1 0/4-20 mA without 2 0/4-20 mA Ex Zone 1 0/4-20	
Version 0 no features 1 Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz Adjustable U Standard voltage 60 Hz K Standard voltage 50 Hz K Standard voltage 5	
0 no features Liquid end heating 2 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz Standard voltage 60 Hz K Standard voltage 60 Hz A Standard voltage 60 Hz K Standard voltage 60 Hz Standard voltage 60 Hz M Standard voltage 60 Hz A Standard voltage 60 Hz A	
1 Liquid end heating Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz K Standard voltage 60 Hz Without motor with IEC flange 1 without motor with NEMA flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 D IP 5 1 IP 56 EE IP 5 A IP 55 EEXA F IP 5 B IP 55 EEXA K IP 6 C IP 55 EEXA Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 1 0/4-20 mA without 2 0/4-20 mA kithout	
Liquid end polished Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 60 Hz K Standard voltage 60 Hz K Standard voltage 60 Hz K Standard voltage 60 Hz adjustable 0 Externally mounted pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 D IP IP 6 A IP 55 EExn F IP 6 B IP 55 EExe K IP 6 C IP 55 EExe STORE STORE I IP 6 STOKE length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA without 2 0/4-20 mA Ex Zone	
Special paint finish Power connector A Standard voltage 50 Hz Standard voltage 60 Hz K Standard voltage 60 Hz adjustable 0 Externally mounted pump 1 without motor with IEC flange Electrical protection system / explosion 0 IP 55 1 IP 56 E IP 5 A IP 55 EExn F IP 8 B IP 55 EExe K IP 6 C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 1 0/4-20 mA without 2 0/4-20 mA without 2 0/4-20 mA ex Zone	
Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz K Standard voltage 60 Hz adjustable 0 Externally mounted pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 1 IP 56 E IP 5 A IP 55 EExn F IP 5 B IP 55 EExe K IF IP 5 C IP 55 EExe K IF IP 6 Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 1 2 0/4-20 mA Ex Zone	
A Standard voltage 50 Hz B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz K Standard voltage 60 Hz K Standard voltage 60 Hz K Standard voltage 60 Hz Without motor with lEC flange without motor with NEMA flange Electrical protection system / explosion UP 55	
B Standard voltage 50 Hz adjustable H Standard voltage 60 Hz K Standard voltage 60 Hz adjustable Externally mounted pump without motor with IEC flange without motor with NEMA flange Electrical protection system / explosion IP 55	
H Standard voltage 60 Hz K Standard voltage 60 Hz adjustable 0 Externally mounted pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 ID IP 5 IN IP 56 ID IP 5 IN IP 55 EExx	
K Standard voltage 60 Hz adjustable Externally mounted pump without motor with IEC flange without motor with NEMA flange Electrical protection system / explosion 0 IP 55 D IP 5 1 IP 56 E IP 5 A IP 55 EExn F IP 5 B IP 55 EExe K IP 6 C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA ex Zone	
0 Externally mounted pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion 0 IP 55 D IP 5 1 IP 56 E IP 5 A IP 55 EExn F IP 5 B IP 55 EExe K IP 6 C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	
without motor with IEC flange without motor with NEMA flange Electrical protection system / explosion I	
2 without motor with NEMA flange Electrical protection system / explosion 0	
Electrical protection system / explosion 0 IP 55 D IP 5 1 IP 56 E IP 5 A IP 55 EExn F IP 5 B IP 55 EExe K IP 6 C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA ex Zone	
0	protection
A IP 55 EEXN F IP 6 B IP 55 EEXe K IP 6 C IP 55 EEXde Electrical options 0 no options 1 Stroke ength adjustment 0 manual 1 0/4-20 mA without 1 2 0/4-20 mA Ex Zone	6 EExn
B IP 55 EExe K IP 6 C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	6 EExe
C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	6 EExde
Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	5 EExde
0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	
1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	
Stroke length adjustment 0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	
0 manual 1 0/4-20 mA without 2 0/4-20 mA Ex Zone	
1 0/4-20 mA without 2 0/4-20 mA Ex Zone	
0/4-20 mA Ex Zone	Sv.
5 0/4-20 mA Ex Zone	
6 0/4-20 mA Ex Zone	
Environmental co	
0 -20 °C to	
	0 °C
2 0 °C to 55	°C
Approval	;
	675
	X / API 675
5 VD	MA / ATEX

^{*}For further pump configurations see Type of drive page \rightarrow 2-55

Product Catalogue 2018

Process Metering Pumps

 $^{^{\}star\star}$ Modified design (M) is available with every identity code feature

Process Metering Pumps

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

2.12.4

Orlita® MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 80 Single Pump 50 Hz

Plunger Ø	Stroke volume		Pump				mp head cteristic 4		Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		104 [4]	122 [5]	134 [6]	155 [7]	160 [8]	182 [9]	193 [F]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
-	stroke									pressure	pressure	
16	4.02	25	29	32	37	38	43	46	400	0.75	0.83	Ke DN 6
20	6.28	39	46	50	58	60	68	72	400	0.75	0.83	Ke DN 6
22	7.60	47	55	61	70	73	82	87	360	0.79	0.80	Ke DN 10/6
25	9.82	61	71	79	91	94	107	113	285	0.79	0.85	Ke DN 10
27	11.45	71	83	92	106	109	125	132	244	0.81	0.85	Ke DN 10
29	13.21	82	96	106	122	126	144	152	211	0.82	0.85	Ke DN 10
30	14.14	88	103	113	131	135	154	163	198	0.83	0.86	Ke DN 10
36	20.36	126	149	164	189	195	222	235	137	0.85	0.87	Ke DN 16
40	25.13	156	184	202	233	241	274	290	111	0.86	0.88	Ke DN 16
44	30.41	189	222	245	282	292	331	351	98	0.86	0.88	Ke DN 16
46	33.24	207	243	268	309	319	362	384	84	0.86	0.88	Ke DN 16
50	39.27	244	287	316	365	377	428	453	71	0.87	0.88	Ke DN 16
60	56.55	352	414	455	526	543	617	653	50	0.88	0.89	Ke DN 16/25
65	66.37	413	486	535	617	637	724	766	40	0.88	0.89	Ke DN 16/25
80	100.53	626	736	810	935	965	1,097	1,161	25	0.89	0.89	Ke DN 25
100	157.08	979	1,150	1,266	1,461	1,508	1,714	1,814	17	0.89	0.89	Ke DN 32

Technical Data MfS 80 Single Pump 60 Hz

Plunger Ø	Stroke volume		Pump		Q _{th} in I/h dentity co		•		Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		119 [3]	126 [4]	148 [5]	163 [6]	188 [7]	194 [8]	221 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
16	4.02	28	30	35	39	45	46	53	400	0.75	0.83	Ke DN 6
20	6.28	44	47	55	61	70	73	83	400	0.75	0.83	Ke DN 6
22	7.60	54	57	67	74	85	88	100	360	0.79	0.80	Ke DN 10/6
25	9.82	70	74	87	96	110	114	130	285	0.79	0.85	Ke DN 10
27	11.45	81	86	101	112	129	133	151	244	0.81	0.85	Ke DN 10
29	13.21	94	100	117	129	149	153	175	211	0.82	0.85	Ke DN 10
30	14.14	101	107	125	138	159	164	187	198	0.83	0.86	Ke DN 10
36	20.36	145	154	180	199	229	237	269	137	0.85	0.87	Ke DN 16
40	25.13	179	190	223	245	283	292	333	111	0.86	0.88	Ke DN 16
44	30.41	217	230	270	297	343	354	402	98	0.86	0.88	Ke DN 16
46	33.24	237	251	295	325	375	387	440	84	0.86	0.88	Ke DN 16
50	39.27	280	297	349	384	443	457	520	71	0.87	0.88	Ke DN 16
60	56.55	404	428	502	553	638	659	749	50	0.88	0.89	Ke DN 16/25
65	66.37	474	502	589	649	749	773	879	40	0.88	0.89	Ke DN 16/25
80	100.53	718	761	893	983	1,134	1,171	1,332	25	0.89	0.89	Ke DN 25
100	157.08	1,123	1,189	1,396	1,537	1,774	1,830	2,081	17	0.89	0.89	Ke DN 32

Ke Conical valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System

Orlita® MFS 80 (MF3a) hydraulic diaphragm metering pump

MF3a	Drive t															
	H1		rive horiz					AL	Drive mo							
	V1		rive vertic					AR	Drive mo		ght-han	d				
	Z1		rive centr					М	Modified	1 **						
			er diame	ter	LOOF	IOE		Logo	30 mm		1044	144		Loco	100	1100 1100
		016 020	16 mm 20 mm		025 027	25 mm 27 mm		030 036	36 mm		044 046	44 mm 46 mm		060 065	60 mm 65 mm	100 100 mm
		020	22 mm		027	29 mm		040	40 mm		050	50 mm		080	80 mm	
		OLL.	Stroke	rate 50				10.0	10111111		1000	100 111111		1000	100 11	
			3) Stroke		5	122 (14	48) Stroke	es/min	7	155 (188	3) Strok	es/min	9	182 (221) strokes/min
			4	104 (1	26) stro	kes/min	6	134 (10	63) Stroke	es/min	8	160 (194	4) Strok	es/min	F	193 (-) Strokes/min
				Liquid	d end m	naterial (in	cludir	ig valve	materia	ls)						
				S1		ss steel (se			,							
						erature of		ed med	ium							1.40.00
					0	-10 °C to -25 °C to				2		to 60 °C to 115 °C			4	10 °C to 150 °C 10 °C to 150 °C
					'	Displace		ot		٥	10 0	10 113 0	,		+	10 0 10 100 0
						0			yer diaph	ragm						
						1				_	ith pres	sure gaug	ae			
								d end v			·		•			
							0	Standa	ırd			2			uble valv	
							1		ırd with sı			3	Standa	ard + do	uble valv	re with spring
									ulic conr			n side			1	ANO
								G N	Thread I					A D	Flange	ANSI DIN/ISO
								IN				dischar	ao cida		riarige	DIN/ISO
									G		DIN/IS		ge siuc	A	Flange	ANSI
									N		NPT/A			D		DIN/ISO
										Versio	n				_	
										0	no feat					
										1	'	end heati	•			
										2		end polis				
										3		al paint fin connect				
											A	Standar		ne 50 Hz	,	
											В				- z adjustal	ole
											Н	Standar	d voltag	je 60 Hz	2	
											K		_	-	z adjustal	ole
											0	External			•	
											1	without i			•	
											2				/A flange	
												0	IP 55	ections	system /	explosion protection D IP 56 EExn
												1	IP 56			E IP 56 EExe
												Α	IP 55 I			F IP 56 EExde
												В	IP 55 I			K IP 65 EExde
												С	IP 55 I			
													Electr 0	ical opt		
													1	Stroke		
																adjustment
														0	manual	
														1	0/4-20 r	nA without Ex
														2		nA Ex Zone 2
														3		nA Ex Zone 1
														4		mA Ex without EX offshore
														5 6		nA Ex Zone 2 offshore nA Ex Zone 1 offshore
														٥		na Ex Zone Toffshore
															0	1-20 °C to 40 °C
															1	-40 °C to 40 °C
															2	0 °C to 55 °C
																Approvals
																0 CE
																1 API 675
																2 VDMA
																3 ATEX 4 ATEX / API 675
																5 VDMA / ATEX
																V V V V V V V V V V V V V V V V V V V
				ı				ı								

^{*}For further pump configurations see Type of drive page \rightarrow 2-55

^{**} Modified design (M) is available with every identity code feature

2.12.5

Orlita® MFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 180 Single Pump 50 Hz

Plunger Ø	Stroke volume		Pump		Q _{th} in I/I entity cod				Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		92 [4]	107 [5]	117 [6]	134 [7]	152 [8]	171 [9]	200 [F]				
mm	ml/ stroke	I/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
25	19.63	107	126	138	157	178	201	235	366	0.77	0.83	Ke DN 16
30	28.27	155	181	199	226	257	290	339	254	0.81	0.85	Ke DN 16
36	40.72	223	262	286	326	370	417	489	176	0.83	0.86	Ke DN 16
40	50.27	276	323	353	403	457	515	604	143	0.85	0.87	Ke DN 25
44	60.82	334	391	428	488	553	623	730	118	0.85	0.87	Ke DN 25
50	78.54	431	505	552	630	714	805	943	91	0.86	0.88	Ke DN 25
55	95.03	521	611	668	762	864	974	1,141	75	0.87	0.88	Ke DN 32
60	113.10	621	727	796	907	1,029	1,160	1,359	63	0.87	0.89	Ke DN 32
65	132.73	729	854	934	1,065	1,207	1,361	1,594	54	0.88	0.89	Ke DN 32
70	153.94	845	990	1,083	1,235	1,400	1,579	1,849	46	0.88	0.89	Ke DN 40
75	176.71	970	1,137	1,243	1,418	1,608	1,812	2,123	40	0.88	0.89	Ke DN 40
80	201.06	1,104	1,293	1,415	1,613	1,829	2,062	2,416	35	0.88	0.89	Ke DN 40
85	226.98	1,246	1,460	1,597	1,821	2,065	2,328	2,727	31	0.88	0.89	Ke DN 40
90	254.47	1,397	1,637	1,791	2,042	2,315	2,610	3,057	28	0.89	0.89	Ke DN 40
95	283.53	1,557	1,824	1,995	2,275	2,590	2,908	3,407	25	0.89	0.89	Pt DN 50
100	314.16	1,725	2,021	2,211	2,521	2,858	3,223	3,775	22	0.89	0.89	Pt DN 50
115	415.48	2,281	2,673	2,924	3,334	3,781	4,262	4,992	17	0.89	0.89	Pt DN 65
125	490.87	2,696	3,158	3,455	3,939	4,467	5,036	-	14	0.89	0.90	Pt DN 65
135	572.56	3,144	3,684	4,030	4,595	5,210	5,874	6,880	12	0.89	0.90	Pt DN 65
142	633.47	3,479	4,076	4,458	5,084	5.764	6,499	7,612	11	0.89	0.90	Pt DN 65

Technical Data MfS 180 Single Pump 60 Hz

Plunger	Stroke		Pump	capacity	' Q _{th} in I/I	n per pun	np head a	at H/min	Max.	Efficiency	Efficiency	Standard
Ø	volume			[1	dentity c	ode char	acteristic	3 to 9]:	pressure	at	at	type of valve
		98 [3]	111 [4]	130 [5]	142 [6]	162 [7]	184 [8]	208 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
25	19.63	116	130	153	167	216	244	244	352	0.77	0.83	Ke DN 16
30	28.27	167	188	220	241	275	312	352	254	0.81	0.85	Ke DN 16
36	40.72	240	271	318	347	396	449	507	176	0.83	0.86	Ke DN 16
40	50.27	297	335	392	429	489	555	625	143	0.85	0.87	Ke DN 25
44	60.82	359	405	475	519	592	671	757	118	0.85	0.87	Ke DN 25
50	78.54	464	523	613	671	765	867	978	91	0.86	0.88	Ke DN 25
55	95.03	561	633	742	811	925	1,049	1,183	75	0.87	0.88	Ke DN 32
60	113.10	668	753	883	966	1,101	1,249	1,408	63	0.87	0.89	Ke DN 32
65	132.73	784	884	1,036	1,134	1,293	1,466	1,652	54	0.88	0.89	Ke DN 32
70	153.94	909	1,026	1,202	1,315	1,499	1,700	1,916	46	0.88	0.89	Ke DN 40
75	176.71	1,044	1,178	1,380	1,509	1,721	1,951	2,200	40	0.88	0.89	Ke DN 40
80	201.06	1,188	1,340	1,570	1,717	1,958	2,220	2,503	35	0.88	0.89	Ke DN 40
85	226.98	1,341	1,513	1,772	1,939	2,211	2,507	2,826	31	0.88	0.89	Ke DN 40
90	254.47	1,503	1,696	1,987	2,174	2,478	2,810	3,168	28	0.89	0.89	Ke DN 40
95	283.53	1,675	1,890	2,214	2,422	2,762	3,131	3,530	25	0.89	0.89	Pt DN 50
100	314.16	1,856	2,094	2,453	2,684	3,060	3,470	3,912	22	0.89	0.89	Pt DN 50
115	415.48	2,455	2,769	3,245	3,549	4,047	4,589	5,173	17	0.89	0.89	Pt DN 65
125	490.87	2,900	3,272	3,834	4,193	4,781	5,422	-	14	0.89	0.90	Pt DN 65
135	572.56	3,383	3,817	4,472	4,891	5,577	6,324	-	11	0.89	0.90	Pt DN 65
142	633.47	3,743	4,223	4,947	5,412	6,171	6,997	-	11	0.89	0.90	Pt DN 65

DK Double ball valve, Pt Plate valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Process Metering Pumps

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS 180 (MF4a) hydraulic diaphragm metering pump

MF4a	Drive t	уре															
	H1		rive horiz	ontal*			Z1	Main d	rive centra	al *			AR		nodule r	ight-	
	\/4	NA-:	uh sa · · · · · ·				۸.	D.::	ا دادامه	. h ·				hand	- al **		
	V1		rive vertic				AL	Drive n	nodule lef	-nand			М	Modifie	∌a **		
			er diamet	ter	1044	144 mm		LOGE	lee mm		l no E	l OE mm		1115	1115 m	~	
		025 030	25 mm 30 mm		044 050	44 mm 50 mm		065 070	65 mm 70 mm		085 090	85 mm 90 mm		115 125	115 mr 125 mr		
		036	36 mm		055	55 mm		075	75 mm		095	95 mm		135	135 mr		
		040	40 mm		060	60 mm		080	80 mm		100	100 mm		142	142 mr		
		040		oto EO				1000	00 111111		100	100 11111		142	142 1111	11	
			Stroke i		Strokes			7	134 (162	\ Ctrol	oc/min						
			4	` '	วแบ่หย่ร 11) strok			8	152 (184	,							
			5	,		okes/min		9	171 (208								
			6	,	,	okes/min		F	200 (-) S	,							
			o .	,	,		includ	-	e materi		,,,,,,,						
				S1		ss steel (ais)							
						erature o											
					0	-10 °C t			2	-40 °	C to 60 °	°C	4	I 10 °C	to 150 °	С	
					1	-25 °C t			3		to 115		1				
						Displac	er forr	nat	ı								
						0	PTFE	multi-la	yer diaph	ragm							
						1	PTFE	multi-la	yer diaph	ragm v	vith pres	sure gau	ge				
							Liqui	d end v	ersion								
							0	Standa	ırd			2	Stand	lard + d	ouble va	lve	
							1	Standa	ırd with sp	ring		3	Stand	lard + d	ouble va	lve with	spring
									ulic conn	ectior	suctio	n side	·				
								G	Thread D				Α	Flange			
								N	Thread N				D		DIN/ISO)	
												n dischai	rge sid				
									G		d DIN/IS			A	Flange		^
									N		d NPT/	ANSI		D	Flange	DIN/IS	0
										Versi		.			I o	امنسنما	and maliabad
									0 1	No feat				2		end polished	
										1		end heati			ြ	Specia	al paint finish
											A	connect Standar		ne 50Hz	,		
											В	Standar		-		hle	
											Н	Standar		_	•	ibic	
											ĸ	Standar		_		ble	
											0	Externa		-			
											1	without	-	-			
											2	without			•	ie	
																	sion protection
												0	IP 55			D	IP 56 EExn
												1	IP 56			E	IP 56 EExe
												Α	IP 55			F	IP 56 EExde
												В	IP 55			K	IP 65 EExde
												С	IP 55	EExde			
														rical op			
													0	No opt			
													1		sensor		
															length		ment
														0	Manua		. =
														1			nout Ex
														2		mA Ex	
														3		mA Ex	Zone 1 without EX offshore
														5			Without EX offshore Zone 2 offshore
														6			Zone 2 offshore
														0			
															0		al conditions to 40 °C
															1		to 40 °C
														2	0 °C to		
1	1	1				1		1				1			_	Appro	
															Appro 0	CE	
	1				1				1				1	API 675			
																2	VDMA
																3	ATEX
																4	ATEX / API 675
																5	VDMA / ATEX
																,	VOWA/ATEX

^{*}For further pump configurations see Type of drive page \rightarrow 2-55

^{**} Modified design (M) is available with every identity code feature

2.12.6

Orlita® MFS 600 (MF5b) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 600 Single Pump 50 Hz

Plunger Ø	Stroke volume	_		y Q _{th} in I/ characte			at H/min		Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		90 [4]	99 [5]	117 [6]	134 [7]	156 [8]	173 [9]	204 [F]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
36	40.72	219	242	285	327	381	422	497	392	0.76	0.83	Ke DN 16
38	45.36	244	269	318	364	424	470	554	352	0.77	0.83	Ke DN 16
40	50.27	270	299	352	404	470	521	614	318	0.78	0.84	Ke DN 16
44	60.82	327	361	427	488	569	630	743	263	0.80	0.85	Ke DN 25
46	66.48	357	395	466	534	622	689	812	240	0.81	0.85	Ke DN 25
50	78.54	422	467	551	631	735	814	959	221	0.83	0.86	Ke DN 25
55	95.03	511	565	667	764	889	985	1,161	168	0.84	0.87	Ke DN 25
60	113.10	608	673	794	909	1,059	1,172	1,381	141	0.85	0.87	Ke DN 25
65	132.73	714	789	932	1,067	1,243	1,376	1,621	120	0.85	0.87	Ke DN 32
70	153.94	828	916	1,080	1,237	1,441	1,596	1,880	100	0.90	0.88	Ke DN 32
75	176.71	950	1,051	1,240	1,420	1,654	1,832	2,159	90	0.86	0.88	Ke DN 32
80	201.06	1,081	1,196	1,411	1,616	1,882	2,084	2,456	79	0.87	0.88	Ke DN 40
85	226.98	1,221	1,350	1,593	1,825	2,125	2,353	2,773	70	0.87	0.88	Ke DN 40
90	254.47	1,369	1,514	1,786	2,046	2,383	2,638	3,109	62	0.87	0.88	Ke DN 40
95	283.53	1,525	1,687	1,990	2,279	2,655	2,940	3,464	56	0.87	0.88	Ke DN 50
100	314.16	1,690	1,869	2,205	2,526	2,942	3,257	3,838	50	0.88	0.89	Ke DN 50
115	415.48	2,235	2,472	2,917	3,340	3,890	4,308	5,076	38	0.88	0.89	Ke DN 65
125	490.87	2,641	2,921	3,446	3,946	4,596	5,090	5,998	32	0.89	0.89	Ke DN 65
135	572.56	3,080	3,407	4,020	4,603	5,361	5,937	6,996	26	0.89	0.89	Ke DN 65
142	633.47	3,408	3,769	4,448	5,093	5,932	6,568	7,740	20	0.89	0.89	Ke DN 65

Technical Data MfS 600 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/h		p head a ode chara		_	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		96 [3]	109 [4]	120 [5]	142 [6]	163 [7]	189 [8]	210 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
36	40.72	235	265	294	347	397	462	512	392	0.76	0.83	Ke DN 16
38	45.36	262	296	327	386	442	515	570	352	0.77	0.83	Ke DN 16
40	50.27	291	328	363	428	490	571	632	318	0.78	0.84	Ke DN 16
44	60.82	352	397	439	518	593	691	765	263	0.80	0.85	Ke DN 25
46	66.48	384	434	480	566	648	755	836	240	0.81	0.85	Ke DN 25
50	78.54	454	512	567	669	765	892	988	200	0.83	0.86	Ke DN 25
55	95.03	550	620	686	809	926	1,080	1,196	168	0.84	0.87	Ke DN 25
60	113.10	654	738	816	963	1,102	1,285	1,423	141	0.85	0.87	Ke DN 25
65	132.73	768	866	958	1,131	1,294	1,508	1,670	120	0.85	0.87	Ke DN 40
70	153.94	891	1,005	1,111	1,312	1,501	1,749	1,937	100	0.90	0.88	Ke DN 32
75	176.71	1,023	1,154	1,276	1,506	1,723	2,008	2,224	90	0.86	0.88	Ke DN 32
80	201.06	1,164	1,313	1,452	1,713	1,960	2,285	2,530	79	0.87	0.88	Ke DN 40
85	226.98	1,314	1,482	1,639	1,934	2,213	2,580	2,856	70	0.87	0.88	Ke DN 40
90	254.47	1,473	1,661	1,838	2,168	2,481	2,892	3,202	62	0.87	0.88	Ke DN 40
95	283.53	1,641	1,851	2,047	2,416	2,767	3,222	3,568	56	0.87	0.88	Ke DN 50
100	314.16	1,818	2,051	2,269	2,677	3,063	3,571	3,954	50	0.88	0.89	Ke DN 50
115	415.48	2,405	2,713	3,000	3,541	4,051	4,722	5,229	38	0.88	0.89	Ke DN 65
125	490.87	2,841	3,205	3,545	4,183	4,786	5,579	-	32	0.89	0.89	Ke DN 65
135	572.56	3,314	3,739	4,135	4,879	5,587	6,508	7,206	26	0.89	0.89	Ke DN 65
142	633.47	3,667	4,136	4,575	5,399	6,182	7,200	7,973	20	0.89	0.89	Ke DN 65

DK Double ball valve, Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System

Orlita® MFS 600 (MF5a) hydraulic diaphragm metering pump

MF5b	Drive t	уре															
	H1		rive horiz	ontal *				AL	Drive mo	dule le	ft-hand						
	V1	Main d	rive vertic	al *				AR	Drive mo	dule ri	aht-han	d					
	Z1		rive centr					М	Modified								
			er diame					1	1								
		036	36 mm	ICI	046	46 mm		065	65 mm		085	85 mm		115	115 mr	n	
		038	38 mm		050	50 mm		070	70 mm		090	90 mm		125	125 mr		
		040	40 mm		055	55 mm		075	75 mm		095	95 mm		135	135 mr		
		040															
		044	44 mm		060	60 mm		080	80 mm		100	100 mm		142	142 mr	T1	
			Stroke							, .		1				r	
			3	' '	Strokes/		5)) Strokes		7	134 (16					0) strokes/min
			4	90 (10	9) strok	es/min	6	117 (14	12) Stroke	es/min	8	156 (189	9) Strok	es/min	F	204 (-)	Strokes/min
				Liquid	l end m	aterial (i	ncludii	ng valve	materia	ls)		•					
				S1	Stainle	ss steel (see tab	le, shee	t 2)								
					Tempe	erature o	f pump	ed med	lium								
					0	-10 °C t	o 80 °C			2	-40 °C	to 60 °C			4	10 °C t	to 150 °C
					1	-25 °C t	o 60°C			3	10 °C	to 115 °C				1	
						Displac	er forn	nat									
						0			er diaphr	agm							
						1				_	th press	sure gaug	e				
								l end ve		ug	р. оос	Julio guug					
							0	Standa				2	Standa	ard + do	uble val	Ve	
		1					1		rd with sr	oring		3				ve ve with s	snring
							l		ulic conn	-	CHOH!		Lotariu	F UU	abic val	A C ANITUL S	771119
								G	Thread I			ii side	Α	Flange	ANGI		
								N	Thread I				D	_		_	
								IN							DIN/IS0	J	
												dischar	ge side		1-1	ANIOI	
									G		DIN/IS			A	Flange		
									N		NPT/A	ANSI		D	Flange	DIN/ISC)
										Version	-						
										0	No fea				2		end polished
										1		end heati	•		3	Special	I paint finish
											Power	connect	or				
											Α	Standar					
											В	Standar	d voltag	je 50Hz	adjusta	ble	
											Н	Standar	d voltag	je 60Hz			
											K	Standar	d voltag	je 60Hz	adjusta	ble	
											0	Externa	ly mour	nted pur	np		
											1	without	motor w	ith IEC	flange		
											2	without	motor w	ith NEM	1A flange	е	
												Electric	al prot	ection s	svstem	/ explos	sion protection
												0	IP 55		- ,	D	IP 56 EExn
												1	IP 56			E	IP 56 EExe
												Α	IP 55 E	EExn		F	IP 56 EExde
												В	IP 55 E	EExe		K	IP 65 EExde
												С	IP 55 E			1	
												ľ		ical opt	ione		
													0	no opti			
													1		sensor		
													'			adjustr	mant
														0			IIEIIL
														1	manua	n MA with	out Ev
														2		mA Ex Z	
														3		mA Ex Z	
														4			vithout EX offshore
														5			Zone 2 offshore
														6	0/4-20	mA Ex Z	Zone 1 offshore
															Enviro		I conditions
															0		to 40 °C
															1		to 40 °C
															2	0 °C to	55 °C
																Approv	vals
																0	CE
																1	API 675
		1														2	VDMA
							1									3	ATEX
																-	
																4	ATEX / API 675
																5	VDMA / ATEX

^{*}For further pump configurations see Type of drive page \rightarrow 2-55

^{**} Modified design (M) is available with every identity code feature

2.12.7

Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 1400 Single Pump 50 Hz

Plunger Ø	Stroke volume		Pump	capacity	Q _{th} in I/I				Max. pressure	Efficiency at	Efficiency at	Standard type of valve
•	volunic	80 [4]	93 [5]	106 [6]	125 [7]	143 [8]	169 [9]	191 [F]	pressure	u.	u.	type of valve
mm	ml/	I/h	I/h	I/h	120 [/] I/h	I/h	I/h	I/h	bar	100%	50%	
	stroke	,,,,					4	-,		pressure	pressure	
30	42.41	202	235	270	318	364	431	486	630	0.67	0.78	Ke DN 16
40	75.40	360	419	480	565	647	766	864	435	0.75	0.83	Ke DN 25
42	83.13	397	462	529	623	713	844	952	435	0.76	0.83	Ke DN 25
44	91.23	435	507	581	684	783	927	1,045	394	0.76	0.83	Ke DN 25
46	99.71	476	554	635	748	856	1,013	1,142	361	0.77	0.83	Ke DN 25
50	117.81	562	654	750	884	1,011	1,197	1,350	305	0.79	0.84	Ke DN 25
53	132.37	632	735	843	993	1,136	1,345	1,517	271	0.79	0.84	Ke DN 32
55	142.55	681	792	907	1,070	1,224	1,448	1,633	250	0.81	0.85	Ke DN 25
57	153.11	731	851	975	1,149	1,314	1,556	1,754	235	0.81	0.85	Ke DN 32
60	169.65	810	943	1,080	1,273	1,456	1,724	1,944	212	0.82	0.86	Ke DN 25
65	199.10	951	1,106	1,268	1,494	1,709	2,023	2,282	180	0.83	0.87	Ke DN 32
70	230.91	1,103	1,283	1,470	1,733	1,983	2,346	2,646	155	0.84	0.87	Ke DN 40
75	265.07	1,266	1,473	1,688	1,989	2,276	2,694	3,038	135	0.85	0.87	Ke DN 40
80	301.59	1,440	1,676	1,920	2,263	2,590	3,065	3,456	119	0.85	0.87	Ke DN 40
90	381.70	1,823	2,121	2,431	2,865	3,278	3,879	4,375	94	0.90	0.90	Ke DN 50
100	471.24	2,251	2,619	3,001	3,537	4,047	4,789	5,401	76	0.87	0.88	Ke DN 65
120	678.58	3,242	3,772	4,321	5,093	5,827	6,896	7,778	53	0.88	0.89	Ke DN 65
140	923.63	4,412	5,134	5,882	6,933	7,932	9,387	10,587	38	0.88	0.89	Ke DN 80
160	1,206.37	5,763	6,706	7,683	9,055	10,360	12,261	13,827	29	0.89	0.89	Ke DN 80

Technical Data MfS 1400 Single Pump 60 Hz

Plunger Ø	Stroke volume		Pump		Q _{th} in I/h		-		Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		88 [3]	97 [4]	112 [5]	•		174 [8]	206 [9]	-			
mm	ml/	I/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
30	42.41	223	245	286	327	386	442	523	630	0.67	0.78	Ke DN 16
40	75.40	396	437	508	582	686	785	930	435	0.75	0.83	Ke DN 25
42	83.13	437	482	560	642	757	866	1,025	435	0.76	0.83	Ke DN 25
44	91.23	480	529	615	705	831	951	1,125	394	0.76	0.83	Ke DN 25
46	99.71	524	578	672	770	908	1,039	1,230	361	0.77	0.83	Ke DN 25
50	117.81	619	683	794	910	1,073	1,228	1,453	305	0.79	0.84	Ke DN 25
53	132.37	696	767	893	1,023	1,206	1,379	1,632	271	0.79	0.84	Ke DN 32
55	142.55	750	826	961	1,102	1,298	1,486	1,758	250	0.81	0.85	Ke DN 25
57	153.11	805	887	1,033	1,183	1,394	1,596	1,888	235	0.81	0.85	Ke DN 32
60	169.65	892	983	1,144	1,311	1,545	1,768	2,092	212	0.82	0.86	Ke DN 25
65	199.10	1,047	1,154	1,343	1,539	1,814	2,075	2,456	180	0.83	0.87	Ke DN 32
70	230.91	1,214	1,339	1,558	1,785	2,103	2,407	2,848	155	0.84	0.87	Ke DN 40
75	265.07	1,394	1,537	1,788	2,049	2,415	2,763	3,270	135	0.85	0.87	Ke DN 40
80	301.59	1,586	1,748	2,035	2,331	2,747	3,143	3,720	119	0.85	0.87	Ke DN 40
90	381.70	2,008	2,213	2,575	2,950	3,477	3,979	4,200	94	0.90	0.90	Ke DN 50
100	471.24	2,479	2,732	3,179	3,642	4,293	4,912	4,708	76	0.87	0.88	Ke DN 65
120	678.58	3,570	3,935	4,578	5,245	6,182	7,073	8,371	53	0.88	0.89	Ke DN 65
140	923.21	4,859	5,356	6,232	7,140	8,415	9,628	-	38	0.88	0.89	Ke DN 80
160	1,206.37	6,347	6,995	8,140	9,325	10,991	12,575	-	29	0.89	0.89	Ke DN 80

DK Double ball valve Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

Allow for a minimum 10% power reserve when designing in accordance with API

All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System

Orlita® MFS 1400 (MF6a) hydraulic diaphragm metering pump

MF6a	Drive t	vpe														
• • •	H1		rive bare	horizon	ıtal *			Z1	Main dri	ve bare	central	*		AR	Drive r	nodule right-hand
	V1	Main d	rive bare	vertical	*			AL	Drive mo	odule le	ft-hand			М	Modifie	
			er diame													
		030	30 mm	to:	046	46 mm		057	57 mm		075	75 mm		120	120 mi	m
		040	40 mm		050	50 mm		060	60 mm		080	80 mm		140	140 mi	
		042	42 mm		053	53 mm		065	65 mm		090	90 mm		160	160 mi	
		042	44 mm		055	55 mm		070	70 mm		100	100 mm		120	120 mi	
		044		50	l			1070	70111111		100	100 111111		120	120 1111	'II
			Stroke				1-	100/446	o\ O4	. /!	l -	1405 (45	O) Ot1-	/!	10	1400 (000) -t1 (
			3		Strokes/		5		2) Strokes		7	125 (152				169 (206) strokes/min
			4	,) stroke:		6		29) Stroke		8	143 (174	4) Strok	es/min	-	191 (-)
									materia	ıls)						
				S1		ss steel (,							
						erature o										
					0	-10 °C t			2		to 60 °		4	10 °C	to 150 °	С
					1	-25 °C t	:o 60 °C	;	3	10 °C	to 115 °	°C				
						Displac										
						0	PTFE	multi-lay	er diaphr	agm						
						1	PTFE	multi-lay	er diaphr	agm w	th press	sure gaug	je			
							Liquid	d end ve	ersion							
							0	Standa	ırd			2	Standa	ard + do	uble va	lve
							1	Standa	rd with sp	oring		3	Standa	ard + do	uble va	lve with spring
								Hydrai	ulic conn	ection	suction	n side				
								G	Thread I	DIN/ISC)		Α	Flange	ANSI	
								N	Thread I	NPT/AN	ISI		D	Flange	DIN/IS	0
									Hvdrau	lic con	nection	dischar	ae side	9		
									G		DIN/IS			Α	Flange	ANSI
									N	Thread	NPT/A	NSI		D		DIN/ISO
										Version	n		J.	J.		
										0	no feat	tures			2	Liquid end polished
										1		end heati	na		3	Special paint finish
										-		connect			1-	1 - P
											A	Standar		ne 50Hz		
											В	Standar	_	-		hle
											Н	Standar	_	-	-	
											K	Standar		-		ble
											0	External	_	-	-	bic
											1	without	•	•	•	
											2	l			-	
											2	without				
														ection		/ explosion protection
												0	IP 55		D	IP 56 EExn
												1	IP 56		E	IP 56 EExe
												A	IP 55 E		F	IP 56 EExde
												В	IP 55 E		K	IP 65 EExde
												С	IP 55 E			
														ical opt		
													0	no opti		
													1		sensor	
														Stroke		adjustment
														0	manua	d .
														1	0/4-20	mA without Ex
														2	0/4-20	mA Ex Zone 2
														3	0/4-20	mA Ex Zone 1
														4	0/4-20	mA Ex without EX offshore
														5	0/4-20	mA Ex Zone 2 offshore
														6	0/4-20	mA Ex Zone 1 offshore
	1		1			1			1							onmental conditions
															0	1-20 °C to 40 °C
	1		1			1			1						1	-40 °C to 40 °C
															2	0 °C to 55 °C
	1		1			1			1						_	
																Approvals 0 ICE
																1 API 675
																2 VDMA
																3 ATEX
	1															4 ATEX / API 675
																5 VDMA / ATEX

^{*}For further pump configurations see Type of drive page \rightarrow 2-55

^{**} Modified design (M) is available with every identity code feature

2.13.1

Hydraulic Diaphragm Metering Pumps Orlita® MH with Metal Diaphragm

Reliable capacity even at very high pressure

Capacity range of single pump: up to 800 l/h, up to 700 bar

The diaphragm metering pump Orlita® MH has a robust metal diaphragm, which permits precise pump capacities even at very high pressure. The ORLITA® MH has a modular construction and therefore has a versatile range of uses. A range of power end versions are therefore available and drives, power ends and dosing heads can be freely combined.

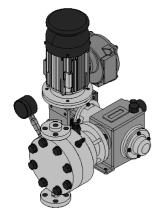
ORLITA® MH hydraulic diaphragm metering pumps (MHS 18 to MHS 1400) with a stroke length of 15 to 60 mm provide a capacity range of up to 800 l/h at pressures of up to 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

- Metal double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation even at very high pressure
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing precision
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)

Excellent flexibility:

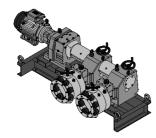

- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- The modular construction ensures a wide range of uses
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Temperature range -60 °C to +200 °C
- Customised designs are available on request

Technical Details

- MHS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- MHS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- MHS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- MHS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- MHS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- MHS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle.
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive).
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 100% under defined conditions and with proper installation.
- Metal diaphragm with diaphragm rupture monitoring system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 60 °C to + 200 °C
- Design in compliance with API 675 among others

Field of application

- Oil/ gas production (onshore/offshore)
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)


P_ORL_068_SW1 Orlita® MHS 18-20

P_ORL_067_SW1 Orlita® MHS 35/45

P_ORL_069_SW1 Orlita® MHS 35-8-8

P_ORL_070_SW1 Orlita® MHS 600-28-28

Pump type	Plunger Ø	Stroke volume		Max. ca	apacity (the	eo.) in I/h a	t strokes/m	in (50 Hz)	Max. pressure
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 18/	3	0.11	0.37	0.46	0.58	0.71	0.92	1.32	100
MHS 18/	5	0.29	1	1.2	1.6	1.9	2.5	3.6	400
MHS 18/	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	400
MHS 18/	7	0.58	2	2.5	3.1	3.8	5	7.1	400
MHS 18/	8	0.75	2.6	3.2	4.1	5	6.5	9.3	348
MHS 18/	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	222
MHS 18/	12	1.70	5.9	7.3	9.2	11.3	14.7	21	154
MHS 18/	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	87
MHS 18/	20	4.71	16.4	20.5	25.5	31.5	41	58.5	55

Pump type	Plunger Ø	Stroke volume		Max. ca	pacity (the	eo.) in I/h at	strokes/m	in (50 Hz)	Max. pressure
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	900
MHS 35/	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	630
MHS 35/	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	445
MHS 35/	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	309
MHS 35/	14	3.08	10.7	13.3	16.7	20.6	26.7	38.2	227
MHS 35/	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	174
MHS 35/	18	5.09	17.7	22.1	27.6	34.0	44.2	63.2	137
MHS 35/	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	111
MHS 35/	22	7.60	26.4	33.0	41.3	50.8	66.1	94.4	92
MHS 35/	25	9.80	34.1	42.7	53.3	65.7	85.4	122.0	71
MHS 35/	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	34
MHS 35/	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	27
MHS 35/	45	31.81	110.6	138.3	172.9	212.8	276.7	395.3	22

Pump type	Plunger Ø	Stroke volume		Мах. сар	acity (theo	.) in I/h at s	trokes/mir	າ (50 Hz)	Max. pressure
			98	104	122	134	160	182	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 80/	16	4.02	23.6	25.0	29.4	32.4	38.6	43.9	696
MHS 80/	18	5.09	29.9	31.7	37.2	41.0	48.8	55.5	550
MHS 80/	20	6.28	37.0	39.1	46.0	50.6	60.3	68.5	445
MHS 80/	22	7.60	44.7	47.4	55.6	61.3	73.0	82.9	368
MHS 80/	25	9.82	57.8	61.2	71.9	79.1	94.2	107.1	285

Pump type	Plunger Ø	Stroke volume		Мах. сар	acity (theo	.) in I/h at s	trokes/min	(50 Hz)	Max. pressure
			99	117	134	156	173	204	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 600/25.5	25.5	20.43	121	143	164	191	211	249	783
MHS 600/28	28	24.63	146	172	198	230	255	300	649
MHS 600/30	29.2	26.79	159	188	215	250	277	327	570
MHS 600/32	32	32.17	191	225	258	301	333	393	497

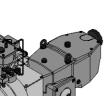
Pump type	Plunger Ø	Stroke volume		Max. cap	acity (theo	.) in I/h at s	trokes/min	(50 Hz)	Max. pressure
			93	106	125	143	169	191	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 1400/	30	42.41	235	270	318	364	431	486	848
MHS 1400/	32	48.25	268	307	362	414	490	553	746
MHS 1400/	36	91.07	339	388	458	524	620	700	589
MHS 1400/	40	75.40	419	480	565	647	766	864	477

Important note:

Abridged presentation of our complete product range. Other types on request

2.14 Hydraulic Metal Diaphragm Metering Pump Highpressure Orlita® MHHP

2.14.1


Hydraulic Metal Diaphragm Metering Pump High-pressure Orlita®

Reliable capacity even at maximum pressure

Capacity range of single pump: 3 - 11 l/h, 3,000 bar

The metal diaphragm metering pumps Orlita® MHHP are special pumps, which provide precise pump capacities even at maximum pressures of up to 3,000 bar.

P ORI 065 SW1 Orlita® MHR 150/7

MHSH 600/

The hydraulic metal diaphragm metering pumps ORLITA® MHRH 150 / MHSH 600 have a metal diaphragm, which is designed to meter precisely at maximum pressures of up to 3,000 bar, thereby ensuring outstanding process reliability and safety.

Technical Details

- MHSH: Stroke length: 0 40 mm, rod force: 40,000 N
- MHRH: Stroke length: 0 32 mm, rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Metal diaphragm
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end/drive versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range -10 °C to +60 °C

Field of application

ml/stroke

mm

- Chemical/petrochemical industry
- Maximum pressure applications of up to 3,000 bar

I/h

Pump type	Plunger Ø	Stroke volume	Max. capa	city (theo.) i	n I/h at strokes/m	nin (50 Hz)	Max. pressure
			58	87	116	145	
	mm	ml/stroke	l/h	l/h	l/h	l/h	bar
MHRH 150/	6	0.90	3.1	4.7	6.3	7.8	3,000
MHRH 150/	7	1.23	4.2	6.4	8.5	10.7	3,000
Pump type	Plunger Ø	Stroke volume	Мах. сара	city (theo.) i	n I/h at strokes/m	in (50 Hz)	Max. pressure
			90 99	117	134 156	173	

I/h

I/h

24.3

I/h

I/h

32.4

I/h

35.9

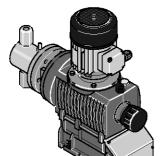
bar

3,000

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.15.1

Plunger Metering Pump Sigma/ 2 (Basic Type)


Sigma plunger pump – durable and high-performance

Capacity range 2 - 76 l/h, 320 - 12 bar

The plunger metering pump Sigma/ 2 (Basic Type) is an extremely robust plunger metering pump with high-performance plunger and the option to adjust the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The plunger metering pump Sigma/ 2 (Basic Type) (SBKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

pk_2_006 Sigma Basic Type SBKa

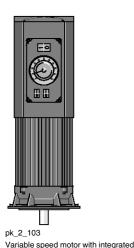
Your benefits

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 1% within the 10 – 100% stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request


Technical Details

- Stroke length: 15 mm
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by self-locking rotary dial in 0.2 % increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1 % within the 10 100 % stroke volume adjustment range under certain defined conditions and with correct installation
- Wetted materials: Stainless steel 1.4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

frequency converter

Sigma Basic Type Control Functions

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1% stroke length, 1 $k\Omega$ response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated speed controller (identity code specification V)

Power supply 1 ph 230 V, 50/60 Hz, 0.37 kW.

External control with 0/4-20 mA (see pk_2_103)

(Speed Controllers see p. → 1-82)

Speed controllers in metal housing (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW. (Speed Controllers see p. → 1-82)

Process Metering Pumps

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

Technical Data

Type SBKa	With	1500	rpm moto	or at 50 Hz	With 1	800 rp	m motoi	at 60 Hz	Suction lift	Perm. pre- pressure	Connector Suction/	Shipping weight	Plunger Ø
	D	ma	rate at x. back ressure	Max. stroke rate		•	at max. essure	Max. stroke rate		suction side	Discharge Side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes /min	m WC	bar	Rp-DN	kg	mm
32002	320	1.9	0.46	71	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	4.0	0.52	129	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	6.4	0.55	195	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	6.1	1.42	71	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	11.0	1.43	129	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	16.7	1.43	195	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	12.4	2.90	71	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	22.5	2.91	129	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	34.1	2.92	195	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	22.4	5.26	71	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	41.5	5.37	129	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	64.0	5.45	195	174	76.0	20.08	233	4.0	6	3/8	25	23

Materials in Contact With the Medium

Materia	al Dosing nead	Suction/pressure connector	Seals/ball seat	Balls	Ball seat
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.25 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	with PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.18 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.18 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.18 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.18 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.21 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.15.2

Identity Code Ordering System for SBKa

Sigma Basic Type SBKa

SBKa	Drive t	type											
	HK		rive, plu	nger									
	1,	Type	, p.u	g-·									
		Type	bar	I/h									
		32002		1.9									
		23004		4.0									
		10006		6.4									
		14006	-	6.1									
		10011		11.0									
		05016		16.7									
		07012		12.4									
		04522	45	22.5									
		02534	25	34.1									
		04022	40	22.4									
		02541		41.5									
		01264		64.0									
				end ma	aterial								
			SS		ess steel								
			33										
				_	g mate	riai"							
				Т	PTFE								
							t body*		,				
					4	Plunge	er (oxide	ceramic	c)				
						Liquid	l end ve						
						0		ing (star					
						1	With 2	valve sp	orings, F	lastelloy	C, 0.1 I	oar	
							Hydra	ulic cor	nection	1			
							0				nector	accordi	ng to technical data)
								Versio	n				
								0		roMinen	t® logo	(standar	rd)
								1		t ProMir			
								M	Modifie			90	
										cal pow	or cun	nlv	
									S				60 Hz, 0.18 kW
									R				otor, 230/400 V, 0.37 kW
									V (0)				
													with integrated SC 1 pH, 230 V, 50/60 Hz
									Z				et 230 V, 50/60 Hz
									M				Hz, 0.18 kW
									N				0.18 kW
									L				Hz, (EExe, EExd), 0.18 kW
									Р				Hz, (EExe, EExd), 0.18 kW
									1	No mot	or, with	B 14 fla	nge (size 71 (DIN)
									2	No mot	or, C 56	flange	(NEMA)
									3	No mot	or, B 5	size 63 ((DIN)
										Enclos	ure rat	ina	
										0	IP 55 (standard	d)
										1			sion ATEX-T3
										2	Fxd m	otor vers	sion ATEX-T4
										A		power e	
										, ,			
											0	senso	
													oke sensor (standard)
											2	_	relay (reed relay)
											3		sensor (Namur) for hazardous locations
													length adjustment
												0	Manual (standard)
												1	With stroke positioning motor, 230 V/50/60 Hz
												2	With stroke positioning motor, 115 V/50/60 Hz
												3	With stroke control motor 020 mA 230 V/50/60 Hz
												4	With stroke control motor 420 mA 230 V/50/60 Hz
	1											5	With stroke control motor 020 mA 115 V/50/60 Hz
		i	1		1	1						6	With stroke control motor 420 mA 115 V/50/60 Hz
												U	VIIII 60 600 6010 11116101 111120 1117 1 1 1 0 1/66/66 1 12
													What stroke control motor in Economy 170 V/30/ co 112

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.15.3 Spare Parts Kits

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

Process Met

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

2.16.1

Plunger Metering Pump Sigma/ 2 (Control Type)

Sigma plunger pump - durable, high-performance and intelligent.

Capacity range 2 - 76 l/h, 320 - 12 bar

The plunger metering pump Sigma/2 (Control Type) is an extremely robust metering pump with integral control for analogue and/or contact operation. It offers the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, and different flange designs.

The plunger metering pump Sigma/ 2 (Control Type) (SCKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks.

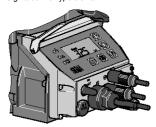
Your benefits

Process reliability:

Metering reproducibility is better than ± 1% within the 10 - 100% stroke length range under defined conditions and with correct installation

- The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks
- Customised designs are available on request

Technical Details


- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- Integrated control for analogue and/or contact operation
- Power supply: 1-phase, $100 230 \text{ V} \pm 10\%$, $240 \text{ V} \pm 6\%$, 50/60 Hz (220 W)
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_ORL_066_SW1 Sigma control type SCKa

pk_2_104 Sigma Controller

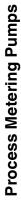
2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

Technical Data

Туре	at ma	ery rate ax. back ressure	W	With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure suction side	Connector Suction/ Discharge	Shipping weight	Plunger Ø	
				ry rate back pr	at max. essure	Max. stroke rate			Side		
	bar	ml/ stroke	psi	l/h	gph (US)	Strokes/ min	m WC	bar	Rp-DN	kg	mm
32002	320	0.46	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	0.52	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	0.55	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	1,42	2,031	7.1	1,88	84	4.0	70	1/4	24	12
10011	100	1,43	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	1.43	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	2.90	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	2.91	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	2.92	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	5.26	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	5.37	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	5.45	174	65.4	17.28	200	4.0	6	3/8	25	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Ball seat
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		


Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 55	100 – 230 V ±10%, 240 V ±6%,	50/60 Hz	220 W	

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

2.16.2

Identity Code Ordering System for SCKa

Sigma Control Type SCKa

HK	SCKa	Drive 1	vpe													
Saper Sape	33			rive. plu	inger											
Sample				, p 10	.5											
23006 230 2.3 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006 230 2.8 23006			. ypc	bar	I/h											
1			32002													
10006 100 6.4 10006 140 7.1 10011 100 13.1 06516 50 16.7 07012 70 14.8 04522 45 26.7 02534 25 34.1 04022 40 26.5 02541 25 49.2 01264 12 5 49.2 12guid end material Salinless steel Sealing material Salinless steel Sealing material 1 With 2 valve springs. Hastelloy C 4, 0.1 bar 1 With 2 valve springs. Hastelloy C 4, 0.1 bar 1 With 2 valve springs. Hastelloy C 4, 0.1 bar 1 Without ProMinent* logo 2 Electrical power supply 1 1 100-230 V ± 170*, 50-60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 0 With fault indicating relay 1x changeover 230 V - 2A 4 A1 + pacing relay 2x normally open 24 V - 100 mA A 3 with pacing relay 2x normally open 24 V - 100 mA A 3 with pacing relay 2x normally closed 2x changely open 24 V - 100 mA A 4 4 4 4 4 4 4 4 4																
14006 140 7.1																
10011 100 13.1																
05016 50																
07012 70																
04522 45 28.7 04523 25 34.1 04022 40 28.5 02541 25 49.2 01264 12 64.0 1																
02534 25 34.1 26.5 26.5 27.5 27.5 28.2																
04022 40 26.5 49.2 201264 212 64.0 24.0																
12																
SS Stainless stee Sealing material* T PTFE																
SS Stainless steel Sealing material* T PTFE Displacement body* 4 Plunger (exide ceramic) Liquid end version 0 No spring (standard) 1 With 2 valve springs, Hastelloy C 4, 0.1 bar Hydraulic connection 0 Standard threaded connector (according to technical data) Version Version 0 With ProMinent® logo Electrical power supity Electrical power supity 1 Tip h 100-230 V ± 10%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay Rel			01204			atavial										
Sealing material* T Displacement body* 4 Plunger (oxide ceramic) Liquid and version 0 No spring (standard) 1 With 2 valve springs, Hastelloy C 4, 0.1 bar Hydraulic connection 0 Standard threaded connector (according to technical data) Version 1 With ProMinent® logo Electrical power supply U 1 ph 100-230 V ±10%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay With fault indicating relay 1x changeover 230 V - 2A 3 With fault indicating relay 1x changeover 230 V - 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 6 A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA 7 Power relay normally closed 1x changeover 230 V - 8 A 7 Control variant 0 Manual + external + pulse control 1 Input with pulse evaluation 1 Input with pulse evaluation 1 Input with cont. evaluation																
PTFE				33												
Displacement body* 4 Plunger (oxide ceramic) Liquid end version 0 No spring (standard) 1 With 2 valve springs, Hastelloy C 4, 0.1 bar Hydraulic connection 0 Standard threaded connector (according to technical data) Version 0 With ProMinent® logo Electrical power supply U 1 1p in 100-2300 ½ 110%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m Usat Salan B 2 m Swiss C 2 m Usat Relay With fault indicating relay 1x changeover 230 V - 2A With fault indicating relay 2x normally open 24 V - 100 mA A Shut-off and warning relays 2x normally open 24 V - 100 mA A Shut-off and warning relays normally open 24 V - 100 mA A Shut-off and warning relays normally open 24 V - 100 mA Control variant 0 Manual + external with pulse control 1 With access code 0 No cess code 1 With access code 1 With access code 1 With access code 1 Input with cont. evaluation							ridi"									
Plunger (oxide ceramic) Liquid end version No spring (standard)					'			. h.a.d*								
Liquid end version No spring (standard)									corami	-)						
0 No spring (standard) 1 With 2 valve springs, Hastelloy C 4, 0.1 bar Hydraulic connection 0 Standard threaded connector (according to technical data) Version 0 Without ProMinent® logo 1 I Without ProMinent® logo 1 I ph 100-230 V ± 10%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V - 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external with pulse control 1 Manual + external with pulse control 1 Manual + external with pulse control 0 No access code 1 With access code 1 With access code 0 No access code 1 Input with poulse evaluation 0 No access code 1 Input with poulse evaluation 1 Input with cont. evaluation 1 Input with cont. evaluation 1 Input with cont. evaluation						7	_			-)						
With 2 valve springs, Hastelloy C 4, 0.1 bar										ndard)						
Hydraulic connection 0 Standard threaded connector (according to technical data) Version 0 With ProMinent® logo 1 Without ProMinent® logo Electrical power supply U 1ph 100-230 V ± 10%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 With fault indicating relay 1x changeover 230 V - 2A 4 As 3 With fault indicating relay 1x changeover 230 V - 2A 4 As 3 with pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 6 Shut-off our lant Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with pulse evaluation 1 Input with cont. evaluation 1 Stroke length adjustment											lactalla	C40-	bor			
Standard threaded connector (according to technical data) Version 0 With ProMinent® logo 1 Without ProMinent® logo Electrical power supply U 1 ph 100-230 V ±10%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V - 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 With access code 0 No access code 1 With access code 1 Input with pulse evaluation 1 Input with pulse evaluation 1 Input with pulse evaluation 1 Input with cont. evaluation 1 Input with cont. evaluation							'				-	C 4, U.	Dai			
Version With ProMinent® logo									LStanda	inection	1 dod oor	nootor (accordi	na to ta	oohnio	al data)
Without ProMinent® logo Electrical power supply U								١٥			ueu coi	inector (accordi	ng to te	50111110	ai dalaj
Without ProMinent® logo Electrical power supply U 1 ph 100-230 V ±10%, 50/60 Hz											roMinon	t® logo				
Electrical power supply									1							
U 1 ph 100-230 V ±10%, 50/60 Hz Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V - 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor 0 Input with cont. evaluation 1 Input with cont. evaluation Stroke length adjustment									'				_			
Cable and plug A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V – 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment														50/60	⊔-,	
A 2 m European B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V – 2A 3 With fault indicating relay 1x changeover 230 V – 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V – 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V – 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code 1 With access code 0 Input with cont. evaluation 1 Input with cont. evaluation Stroke length adjustment										٥				30/00	112	
B 2 m Swiss C 2 m Australian D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V – 2A 3 With fault indicating relay 1x changeover 230 V – 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V – 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code 1 With access code 1 Input with pulse evaluation 1 Input with cont. evaluation 1 Input with cont. evaluation Stroke length adjustment																
C D 2 m Australian 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V – 2A 3 With fault indicating relay 1x changeover 230 V – 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code 1 With access code 1 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment																
Pelay D 2 m USA Relay 0 No relay 1 With fault indicating relay 1x changeover 230 V - 2A 3 With fault indicating relay 1x changeover 230 V - 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment												_				
Relay No relay																
No relay With fault indicating relay 1x changeover 230 V – 2A With fault indicating relay 1x changeover 230 V – 2A With fault indicating relay 1x changeover 230 V – 2A As 1 + pacing relay 2x normally open 24 V - 100 mA Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA Power relay normally closed 1x changeover 230 V - 8 A Control variant Manual + external with pulse control Manual + external + pulse control + analogue Access code No access code With access code Metering monitor O Input with pulse evaluation Input with cont. evaluation Stroke length adjustment											D		PA .			
1 With fault indicating relay 1x changeover 230 V – 2A 3 With fault indicating relay 1x changeover 230 V – 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V – 100 mA A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment													l No role	21/		
With fault indicating relay 1x changeover 230 V – 2A 4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V – 100 mA Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code 1 With access code 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment															aatina	rolay 1y abangaayar 220 V 2A
4 As 1 + pacing relay 2x normally open 24 V - 100 mA 5 As 3 with pacing relay 2x normally open 24 V - 100 mA 6 Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA 7 F Power relay normally closed 1x changeover 230 V - 8 A 7 Control variant 8 Manual + external with pulse control 9 Manual + external + pulse control + analogue 9 Access code 9 No access code 1 With access code 1 With access code 1 Input with pulse evaluation 1 Input with cont. evaluation 1 Input with cont. evaluation 1 Stroke length adjustment												-				
5 As 3 with pacing relay 2x normally open 24 V – 100 mA Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor O Input with pulse evaluation Input with cont. evaluation Stroke length adjustment																
A Shut-off and warning relays normally closed 2x normally open 24 V - 100 mA F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control Manual + external + pulse control + analogue Access code 0 No access code 1 With access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment																
F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor O Input with pulse evaluation Input with cont. evaluation Stroke length adjustment																
F Power relay normally closed 1x changeover 230 V - 8 A Control variant 0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code 1 With access code 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment												A				ig relays normally closed 2x normally open
Control variant 0												F				ly closed 1x changeover 230 V - 8 A
0 Manual + external with pulse control 1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment																.,
1 Manual + external + pulse control + analogue Access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment																xternal with pulse control
Access code 0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment													-			•
0 No access code 1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment													l .			
1 With access code Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment																
Metering monitor 0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment																
0 Input with pulse evaluation 1 Input with cont. evaluation Stroke length adjustment														'		
1 Input with cont. evaluation Stroke length adjustment																
Stroke length adjustment															-	
															'	
U Mai ruel																
																o Ivianuai

2.16.3 **Spare Parts Kits**

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

2.17 Plunger Metering Pump Meta

2 17

Plunger Metering Pump Meta

Meta plunger pump - durable and high-performance

Capacity range 6 - 59 l/h, 216 - 52 bar

The extremely high-performance Meta is a plunger metering pump with the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

pk_2_010
Meta plunger metering pump MTKa

Meta plunger metering pump MTKa

The Meta (MTKa) is a plunger metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of

drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical Details

- Stroke length: 15 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons.

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Control of Meta Piston Metering Pumps

(Speed Controllers see p. → 1-82)

Speed controllers in metal housing (Identity code characteristic ${\sf Z}$)

Frequency changer built into IP 54 protective housing and main switch designed for max. 0.37 kW motor output.

Externally controlled with 0/4-20 mA / 0-10 V to correspond to 0-50 (60) Hz output frequency.

Integrated controller with versatile functions e.g. switching between external/internal control. With internal control, frequency input is via arrow keys. Multi lingual fault message display and motor temperature monitoring (thermistor-protection).

The speed controller assembly consists of a speed controller and a variable speed motor (see also identity code characteristic R).

ProMinent

2.17 Plunger Metering Pump Meta

Technical Data

Type MTKa	With	1500 rլ	om motor	at 50 Hz	With 1	800 rpm m	otor at 60 Hz	Suction lift	Perm. pre- pressure	Connector Suction/	Motor rating	Ship- ping	Plun- ger Ø
		ery rat back p	te at pressure	Max. stroke rate		ery rate at max. back pressure	Max. stroke rate		suction side	Discharge Side		weight	
	bar	l/h	ml/ stroke	Strokes /min	psi	l/h/gph (US)	Strokes /min	m WC	bar	Rp-DN	W	kg	mm
21606	216	6.1	1.42	72	3,130	7.3/1.9	86	4.0	108	1/4	180	18	12
24006	240	6.1	1.42	72	3,477	7.3/1.9	86	4.0	120	1/4	370	20	12
16208	162	8.1	1.42	96	2,347	9.8/2.6	115	4.0	81	1/4	180	18	12
22508	225	8.1	1.42	96	3,260	9.8/2.6	115	4.0	112.5	1/4	370	20	12
12910	129	10.2	1.42	120	1,878	12.2/3.2	144	4.0	64.5	1/4	180	18	12
21610	216	10.2	1.42	120	3,130	12.2/3.2	144	4.0	108	1/4	370	20	12
10812	108	12.2	1.42	144	1,565	14.7/3.9	173	4.0	54	1/4	180	18	12
21012	210	12.2	1.42	144	3,043	14.7/3.9	173	4.0	105	1/4	370	20	12
10213	102	13.0	3.01	72	1,479	15.6/4.1	86	4.0	51	1/4	180	18	17
11313	113	13.0	3.01	72	1,644	15.6/4.1	86	4.0	56.5	1/4	370	20	17
07617	76	17.3	3.01	96	1,109	20.8/5.5	115	4.0	38	1/4	180	18	17
10617	106	17.3	3.01	96	1,541	20.8/5.5	115	4.0	53	1/4	370	20	17
06122	61	21.7	3.01	120	888	26.0/6.9	144	4.0	30.5	1/4	180	18	17
10222	102	21.7	3.01	120	1,479	26.0/6.9	144	4.0	51	1/4	370	20	17
05126	51	26.0	3.01	144	740	31.2/8.2	173	4.0	25.5	1/4	180	18	17
09926	99	26.0	3.01	144	1,438	31.2/8.2	173	4.0	49.5	1/4	370	20	17
05425	54	24.6	5.71	72	782	29.5/7.8	86	4.0	27	3/8	180	18	23
06025	60	24.6	5.71	72	869	29.5/7.8	86	4.0	30	3/8	370	20	23
04033	40	32.8	5.71	96	587	39.4/10.4	115	4.0	20	3/8	180	18	23
05633	56	32.8	5.71	96	815	39.4/10.4	115	4.0	28	3/8	370	20	23
03241	32	41.1	5.71	120	469	49.3/13.0	144	4.0	16	3/8	180	18	23
05441	54	41.1	5.71	120	782	49.3/13.0	144	4.0	27	3/8	370	20	23
02749	27	49.3	5.71	144	391	59.2/15.6	173	4.0	13.5	3/8	180	18	23
05249	52	49.3	5.71	144	761	59.2/15.6	173	4.0	26	3/8	370	20	23

Materials in Contact With the Medium

Materia	Dosing head	Suction/pressure	Seals	Valve	Valve seat	Plunger
I		connector		balls		
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404	Ceramic
			PTFE + 25 % carbon			

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.18/0.37 kW 0.18/0.37 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.37 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.37 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	With PTC, speed control range 1:5

The motor power is dependent on the pump type (see technical data).

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.17 Plunger Metering Pump Meta

2.17.2 Identity Code Ordering System for MTKa

Meta piston metering pump, version a

「Ka Driv	e type											
Н	Main d											
Α	Add-or	n drive										
	Type											
		bar	l/h									
	21606		6.1									
	24006		6.1									
	16208		8.1									
	22508		8.1									
	12910 21610		10.2 10.2									
	10812		12.2									
	21012		12.2									
	10213		13.0									
	11313		13.0									
	07617		17.3									
	10617		17.3									
	06122		21.7									
	10222		21.7									
	05126	51	26.0									
	09926	99	26.0									
	05425		24.6									
	06025		24.6									
	04033		32.8									
	05633		32.8									
	03241		41.1									
	05441		41.1									
	02749 05249		49.3 49.3									
	05249			atavial								
		SS	l end m	ateriai ess steel								
				ig mate								
			T	PTFE	ııaı							
					cemen	t body*						
				S			ger, oxid	de ceran	nic			
						l end ve						
					0		ve sprin	gs				
					1	With 2	valve s	prings, H	lastelloy	/ C, 0.1	bar	
						Hydra		nnectio				
						0	Stand	ard threa	ided coi	nnector	(accord	ing to technical data)
							Version					
							0				(standa	rd)
							1 M		ıt ProMi	nent® ic	ogo	
							IVI	Modifie	ea ical pov			
								S				/60 Hz (WBS)
								R				notor, 230 V/400 V
								z				et 230 V, 50/60 Hz
								M			V, 50/60	
								N			V, 60 Hz	
								L				Hz, (Exe, Exd)
								Р	3 ph, 2	30 V/40	00 V, 60	Hz, (Exe, Exd)
								1	No mo	tor, with	n flange s	90/63
								2			n flange	
								3		,	n flange	
								4			flange !	
								0			(no mot	or)
				1		1				sure ra		-1)
									0		(standar	
									1			sion ATEX-T3 sion ATEX-T4
				1		1			A		power e	
				1		1			 		e senso	
										0		oke sensor (standard)
										1		troke sensor, Namur signal (Ex)
												e length adjustment
				1		1					0	Manual (standard)
				1		1					2	With stroke positioning, 115 V/50/60 Hz
		1			1	1					A	With stroke control motor 020 mA 230 V/50/60 Hz
											В	With stroke control motor 420 mA 230 V/50/60 Hz
											B C	With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 020 mA 115 V/50/60 Hz

2.17 Plunger Metering Pump Meta

2.17.3 Spare Parts

Spare Parts Kits for Plunger Metering Pump Meta (MTKa)

Consisting of:

- 1 ceramic plunger
- 4 valve balls
- 4 ball seat discs
- 2 PTFE /graphite plunger packing rings
- 2 plunger guide bands
- 14 flat seals
- 2 O-rings

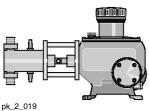
	Order no.
Liquid end FK 12.5 Applies to identity code: 21606, 24006, 16208, 22508,	910470
12910, 21610, 10812, 21012	
Liquid end FK 25 applies to identity code: 10213, 11313, 07617, 10617, 06122,	910471
10222, 05126, 09926	
Liquid end FK 50 applies to identity code: 05425, 06025, 04033, 05633, 03241,	910472
05441, 02749, 05249	

Mounting Frame for Meta MTMa and MTKa

A base frame is available for main and add-on pump combinations.

	Order no.
Base frame for main and one add-on pump	803897
Base frame for main and two add-on pumps	803898
Base frame for main and three add-on pumps	803899

2.18.1


Plunger Metering Pump Makro TZ

Powerful, built to last with a plunger

Capacity range of single pump: 8 - 1,141 l/h, 320 - 11 bar

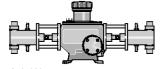
The plunger metering pump Makro TZ impresses with its excellent process reliability, outstanding flexibility and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

Makro TZ plunger metering pump

The plunger metering pump Makro TZ (TZKa) has an adjustable eccentric drive mechanism and, together with the Makro TZ diaphragm metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Process reliability:


■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

pk_2_018 Makro TZ TZKa externally mounted pump

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 4 different gear ratios are available
- Customised designs are available on request

pk 2 020 Makro TZ TZKa double head pump

Technical Details

- Stroke length: 0-20 mm, Rod force: 8,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of shift ring in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 100% under defined conditions and with proper installation. Observe the information in the operating instructions.
- High-performance ceramic-coated stainless steel plunger Wetted materials: Stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_103 Variable speed motor with integrated frequency converter

Makro TZ Metering Pump Actuators

Makro TZ stroke length actuator/control drive Makro TZ actuator

Servomotor for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, including 1 k Ω feedback potentiometer for stroke position response signal, IP 54 degree of protection. Electrical connection 230 V (\pm 10 %), 50/60 Hz, 40 W mech. stroke length display fitted on the Makro TZ power end.

Special voltage/higher degrees of protection/explosion protection upon request.

Makro TZ control drive

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Technical data see actuator.

Design:

Standard signal current input 0/4-20 mA corresponds to stroke length 0 -100 %, manual /automatic operation switch, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

The following functions are integrated in the terminal box cover:

- Start/Stop switch
- Manual/external operation switch (0/4 20 mA)
- Potentiometer for speed control in manual mode
- Onn request externally controllable via PROFIBUS® DP

Variable speed motors with integrated frequency converter with IP 55 protection See page → 1-82

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Frequency Converters for Speed Control see page → 1-82

2.18 Plunger Metering Pump Makro TZ

Technical Data

Type TZKa	V	Vith 150	0 rpm mote	or at 50 Hz	With	1800 rpm moto	or at 60 Hz	Suction lift	Connection, suction/	Shipping weight	Plunger Ø
	Deli	•	e at max.	Max.		y rate at max.	Max.		discharge		
		back	oressure	stroke rate	b	ack pressure	stroke rate		side		
	bar	l/h	ml/	Strokes/	psi	I/h/gph (US)	Strokes/	m WC	G-DN	kg	mm
			stroke	min	•	5. ()	min			J	
320009	320	8.7	2.0	72	4,627	10/2.6	86	4.0	Rp 1/4**-8	50	12
320012	320	11.6	2.0	96	4,627	14/3.7	115	4.0	Rp 1/4**-8	50	12
320014	320	14.5	2.0	120	4,627	17/4.5	144	4.0	Rp 1/4**-8	50	12
320017	320	17.4	2.0	144	4,627	21/5.5	173	4.0	Rp 1/4**-8	50	12
320018	320	17.7	4.1	72	4,627	21/5.5	86	4.0	Rp 1/4**-8	50	17
320024	320	23.6	4.1	96	4,627	28/7.4	115	4.0	Rp 1/4**-8	54	17
320030	320	29.5	4.1	120	4,627	35/9.2	144	4.0	Rp 1/4**-8	54	17
313035	313	35.4	4.1	144	4,526	42/11.1	173	4.0	Rp 1/4**-8	54	17
192033	192	32.9	7.6	72	2,776	39/10.3	86	4.0	Rp 3/8**-10	55	23
192044	192	43.9	7.6	96	2,776	59/15.6	115	4.0	Rp 3/8**-10	55	23
192055	192	54.8	7.6	120	2,776	66/17.4	144	4.0	Rp 3/8**-10	55	23
168066	168	65.8	7.6	144	2,437	79/20.9	173	4.0	Rp 3/8**-10	55	23
113057	113	57.5	13.3	72	1,634	69/18.2	86	4.0	Rp 3/8**-10	56	30
113077	113	76.6	13.3	96	1,634	92/24.3	115	4.0	Rp 3/8**-10	56	30
113096	113	95.8	13.3	120	1,634	115/30.4	144	4.0	Rp 3/8**-10	56	30
096115	96	114.9	13.3	144	1,392	138/36.5	173	4.0	Rp 3/8**-10	56	30
063104	63	104.3	24.2	72	911	125/33.0	86	4.0	G 1 1/4-20	58	40
063139	63	139.0	24.2	96	911	167/44.1	115	4.0	G 1 1/4-20	58	40
063174	63	173.8	24.2	120	914	209/55.2	144	4.0	G 1 1/4-20	58	40
052208	52	208.5	24.2	144	754	250/66.0	173	4.0	G 1 1/4-20	58	40
040163	40	162.9	37.7	72	578	195/51.5	86	4.0	G 1 1/4-20	58	50
040217	40	217.2	37.7	96	578	261/68.9	115	4.0	G 1 1/4-20	58	50
040271	40	271.5	37.7	120	580	326/86.1	144	4.0	G 1 1/4-20	58	50
033326	33	325.8	37.7	144	479	391/103.3	173	4.0	G 1 1/4-20	58	50
028237	28	237.0	54.9	72	405	284/75.0	86	4.0	G 1 1/2-25	62	60
028316	28	315.9	54.9	96	405	379/100.1	115	4.0	G 1 1/2-25	62	60
027395	27	394.9	54.9	120	392	474/125.2	144	4.0	G 1 1/2-25	62	60
022474	22	473.9	54.9	144	319	569/150.3	173	4.0	G 1 1/2-25	62	60
020322	20	322.5	74.7	72	289	387/102.2	86	4.0	G 1 1/2-25	62	70
020430	20	430.0	74.7	96	289	516/136.3	115	4.0	G 1 1/2-25	62	70
020538	20	537.6	74.7	120	290	645/170.4	144	4.0	G 1 1/2-25	62	70
016645	16	645.1	74.7	144	232	774/204.5	173	4.0	G 1 1/2-25	62	70
014475	14	475.1	110.0	72	202	571/150.8	86	4.0	G 2 1/4-40	68	85
014634	14	634.1	110.0	96	202	761/201.0	115	4.0	G 2 1/4-40	68	85
013793	13	792.6	110.0	120	189	951/251.2	144	4.0	G 2 1/4-40	68	85
011951	11	951.1	110.0	144	160	1,141/301.4	173	4.0	G 2 1/4-40	68	85

Other gear reduction ratios are available upon request.

The permissible admission pressure on the suction side is approx. 50% of the max. permissible back pressure.

Materials in Contact With the Medium

Pump type	Hydraulic Ø mm	Dosing head connection	Suction/ pressure seals	Ball seat	Valve balls	Plunger
SST	12 S to 50 S	Stainless steel 1.4571/ 1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramic	Stainless steel/ ceramic
SST	60 S to 70 S	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/ ceramic
SST	85 S	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	1.4404 (plate) Hast. C (spring)	Stainless steel/ ceramic

 $^{^{**}}$ The suction and discharge connectors Rp 1/4 and Rp 3/8 are inner threaded and fitted with double ball valves.

2.18 Plunger Metering Pump Makro TZ

2.18.2

Identity Code Ordering System TZKa

Plunger metering pump TZKa

TZKa	Drive t	уре													
	Н	Main drive													
	Α	Add-on													
	D		main dı	rive											
	В		add-on												
	L .		auu-on												
		Type*		Loopooo	,	144005		100047		Loogoo	,	Loooroo			
		320009		320030		11305		063174 052208 040163 040217		028237		020538			
		320012		313035		11307				028316		016645			
		320014		192033		11309				027395		014475			
		320017		192044		09611				022474		014634			
		320018		192055		06310		040271		020322		013793			
		320024	ļ	168066	3	06313	39	033326	3	020430	20430 011951				
			Liquid	end ma	d material					·		•			
			ss	Stainle											
				Sealing	aling material										
				T	PTFE	(a)									
						comor	t body								
					S			l nlunge	r chrom	ium diox	ride-cos	hate			
					ľ				i, criion	iiuiii uio	viac coc	iicu			
							d end vo		10						
		0 No valve springs 1 With valve springs													
						1		-	_						
								ulic con							
		0 Standard connection 4 SS union nut and insert													
							4			nd insert	t				
								Versio							
								0				no frame			
								2				go, no fra			
								Α				with fran			
								В	With P	Vith ProMinent [®] logo, with frame, duplex Vith ProMinent [®] logo, with frame, triplex					
								С	With P						
								M	Modified						
									Electrical power supply						
									S			V 50/60 H	Hz (WBS	3)	
									R			l motor 4		•	
									V (0)				•	r. frequency converter	
									Z				_		
									P	1 ph, variable speed control set 1 ph, 230 V, 50/60 Hz					
									P 3 ph. 230/400 V 60 Hz (Exe, Exd) L 3 ph. 230/400 V 50 Hz (Exe, Exd)					·	
									V (2)				•	•	
									. ,		-		-	erter (Exd)	
									4			56 C flar	•		
									7			120/80 f	•		
									8			160/90 f	•		
									0				ly moun	ted drive	
										Enclos					
										0	,	Standard	,	ass F	
										1		rsion AT			
										2	Exd ve	rsion AT	EX-T4		
										Α	ATEX	power er	nd		
											Stroke	sensor			
											0	No stro	ke sens	or	
											1	With str	oke sen	sor (Namur)	
														adjustment	
												0		length adjustment, man.	
												1		stroke adjustment motor	
												2			
														stroke adjustment motor	
												3		0-20 mA stroke controller	
												4		1-20 mA stroke controller	
												5		0-20 mA stroke controller	
												6	115 V 4	1-20 mA stroke controller	
													Applic	ation	
													0	Standard	

* Digits 1 - 3=back pressure [bar]; digits 4 - 6=feed rate [l/h]

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	1.5 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	2.2 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	2.2 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	1.5 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.5 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	1.5 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	1.5 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	2.2 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.18.3 Spare Parts Kits

Spare Parts Kits for Plunger Metering Pump Makro TZ

Comprising:

Valve balls

Valve plate with spring

Ball seat discs

PTFE/graphite plunger packing rings

Plunger guides

Flat seals/O rings

	Order no.
Spare parts kit for Makro TZ FK 12/20 S DN 8	1019106
Spare parts kit for Makro TZ FK 17/20 S DN 8	1019107
Spare parts kit for Makro TZ FK 23/20 S DN 10	1019108
Spare parts kit for Makro TZ FK 30/20 S DN 10	1019109
Spare parts kit for Makro TZ FK 40/20 S DN 20	1019110
Spare parts kit for Makro TZ FK 50/20 S DN 20	1019111
Spare parts kit for Makro TZ FK 60/20 S DN 25	1019112
Spare parts kit for Makro TZ FK 70/20 S DN 25	1019113
Spare parts kit for Makro TZ FK 85/20 S DN 40	1019124

2.19 Plunger Metering Pump Makro/ 5

2.19.1

Plunger Metering Pump Makro/ 5

Powerful, built to last with a plunger

Capacity range of single pump: 38 - 6,014 l/h, 320 - 6 bar

The plunger metering pump Makro/ 5 can virtually be used throughout the low-pressure range and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

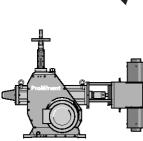
The plunger metering pump Makro/ 5 (M5ka) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

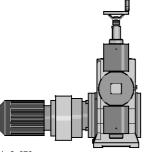
Process reliability:

Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

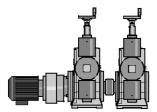
Excellent flexibility:

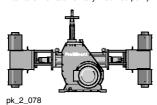

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical Details


- Stroke length: 0-50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- High-performance ceramic-coated stainless steel plunger
- Wetted materials: Stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application


- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering


pk 2 075 Makro/ 5 M5Ka

pk_2_076 Makro/ 5 M5Ka

Makro/ 5 M5Ka externally mounted pump

Makro/ 5 double head pump

Makro/ 5 Pump Control

Stroke length variable speed drive Makro/ 5

Variable speed drive consisting of actuator with motor actuator and integrated microprocessor controller for stroke length adjustment via a standard signal. Actuating time approx. 100 sec. for 100% stroke length, equipped with 2 limit switches for min./max. position, IP rating: IP 52. Electrical connection 230 V (±10%), 50/60 Hz, approx. 40 W, mech. stroke position indicator present at drive Makro/ 5.

Special voltage/higher IP ratings/Ex protection on request.

Standard current input 0/4-20 mA (corresponds to stroke length 0-100%); internal switch for manual/ automatic operation, key switch for stroke adjustment in manual operation mode. Actual value output 0/4-20 mA for remote display.

Frequency converter for speed control in metal housing, IP rating 54

Frequency converter installed in protective housing IP 54 with integrated control unit and main switch suitable for the motor output stated in the following.

Externally controllable with 0/4-20 mA or 0-10V corresponding to 0-50 (60) Hz output frequency.

Integrated control unit with numerous functions, such as toggling external/internal control. With internal control, frequency setting is via arrow keys, error message on multi lingual display etc.

Including evaluator for temperature monitoring of the motor (thermistor protection).

Stroke sensor with namur signal

Mounted on the crank drive of the Makro/5 gearbox. For precise detection of each metering stroke, consisting of actuating cams and inductive proximity switch, switching signal according to Namur. Combined with electronic preselection counters suitable for batch metering or proportional metering in connection with the proportional control.

Retrofitting is only possible on factory premises.

Approved for ex-proof operation with IP rating EEx ia II C T6.

Technical Data

Type M5Ka	Wi	th 1500	rpm moto	or at 50 Hz	1	With 180	0 rpm mot	or at 60 Hz	Suction lift	Connection, suction/	Shipping weight	
	Deliv	ery rate back p	at max. ressure	Max. stroke rate	Del	•	e at max. pressure	Max. stroke rate		discharge side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	m WC	G-DN	kg	mm
3200038	320	38	11	60	4,640	44	12	71	3.0	Rp 1/4–8	300	17
3200048	320	48	11	75	4,640	56	15	89	3.0	Rp 1/4–8	300	17
3200066	320	66	11	103	4,640	78	21	123	3.0	Rp 1/4–8	300	17
3200085	320	85	11	133	4,640	101	27	159	3.0	Rp 3/8–10	300	17
3200100	320	100	11	156	_		_	_	3.0	Rp 3/8–10	300	17
2400070	240	70	21	60	3,480	82	22	71	3.0	Rp 3/8–10	300	23
2400088	240	88	21	75	3,480	104	27	89	3.0	Rp 3/8–10	300	23
2400121	240	121	21	103	3,480	144	38	123	3.0	Rp 3/8–10	300	23
2160157	216	157	21	133	3,132	187	49	159	3.0	Rp 3/8–10	300	23
1700184	170	184	21	156	_	-	-	-	3.0	G 1–15	300	23
1400120	140	120	35	60	2,030	142	38	71	3.0	G 1–15	302	30
1400151	140	151	35	75	2,030	179	47	89	3.0	G 1–15	302	30
1400207	140	207	35	103	2,030	247	65	123	3.0	G 1–15	302	30
1270267	127	267	35	133	1,842	319	84	159	3.0	G 1 1/4–20	302	30
1000314	100	314	35	156	_	_	-	-	3.0	G 1 1/4–20	302	30
0800214	80	214	63	60	1,160	253	67	71	3.0	G 1 1/4–20	303	40
0800268	80	268	63	75	1,160	318	84	89	3.0	G 1 1/4–20	303	40
0800368	80	368	63	103	1,160	439	116	123	3.0	G 1 1/4–20	303	40
0700476	70	476	63	133	1,015	569	150	159	3.0	G 1 1/2–25	303	40
0560558	56	558	63	156			-	-	3.0	G 1 1/2–25	303	40
0500335	50	335	98	60	725	396	105	71	3.0	G 1 1/2–25	303	50
0500419	50	419	98	75	725	497	131	89	3.0	G 1 1/2–25	303	50
0500576	50	576	98	103	725	687	181	123	3.0	G 1 1/2–25	303	50
0450744	45	744	98	133	653	889	235	159	3.0	G 2–32	303	50
0350872	35	872	98	156	_	_	-	_	3.0	G 2–32	303	50
0350483	35	483	141	60	508	571	151	71	3.0	G 1 1/2–25	311	60
0350604	35	604	141	75	508	716	189	89	3.0	G 1 1/2–25	311	60
0350829	35	829	141	103	508	989	261	123	3.0	G 2–32	311	60
0301071	30	1,071	141	133	435	1,280	338	159	3.0	G 2–32	311	60
0251257	25	1,257	141	156	_		-		3.0	G 2–32	311	60
0250658	25	658	192	60	363	778	206	71	3.0	G 2–32	311	70
0250822	25	822	192	75	363	975	258	89	3.0	G 2–32	311	70
0251129	25	1,129	192	103	363	1,348	356	123	3.0	G 2-32	311	70
0231458	23	1,458	192	133	334	1,743	460	159	3.0	G 2 1/4–40	311	70
0181710	18	1,710	192	156	-	-	-	-	3.0	G 2 1/4–40	311	70
0160970	16	970	284	60		1,147	303	71	3.0	G 2 1/4–40	317	85
0161212	16	1,212	284	75	232	1,438	380	89	3.0	G 2 1/4–40	317	85
0161665	16	1,665	284	103		1,988	525	123	3.0	G 2 1/4–40	317	85
0162150	16	2,150	284	133	232	2,570	679	159	3.0	G 2 3/4–50	317	85
0162522	16	2,522	284	156	174	1 500	-	-	3.0	G 2 3/4–50	317	85
0121343	12	1,343	393	60	174	1,589	420	71	3.0	G 2 3/4–50	331	100
0121678	12	1,678	393	75	174	1,991	526	89	3.0		331	100
0122305	12	2,305	393	103	174	2,752	727	123	3.0	G 2 3/4–50	331	100
0122977	12	2,977	393	133	1/4	3,558	940	159	3.0		331	100
0103491	10	3,491	393	156	- 07	0.604	700	- 71	3.0		331	100
0062269	6	2,269	664	60	87		709	71	3.0		350	130
0062837	6	2,837	664	75	87	3,366	889	89	3.0	G 2 1/2–65	350	130
0063896	6	3,896	664	103	87	4,652	1,229	123	3.0	G 2 1/2–65	350	130
0065031	6	5,031	664	133	87	6,014	1,589	159	3.0	G 2 1/2–65	350	130
0066000	6	6,000	664	156	_	-	-	-	3.0	G 2 1/2–65	350	130

2.19.2

Identity Code Ordering System for M5Ka

Plunger metering pump Makro/ 5

M5Ka	Drive t	уре														
	Н	Main dr	Main drive													
	Α	Add-on	on power end													
	D	Double	main dr	ive												
	В	Double	add-on	power e	end											
		Type*														
		320003	18	140012	20	050033	35	025065	8	012134	.3					
		320004		140015		05004				012167						
		320006		140020		0500576 025				012230						
		320008		127026		045074		023145								
		320010		100031		035087		018171		0122977						
		240007		080021			350483 0160970			0103491						
										0062269						
		240008		080026		035060				006283						
		240012		080036		035082		016166		006389						
		216015		070047		030107		016215		006503						
		170018		056055		025125	57	016252	22	006600	0					
				end ma												
			SS	Stainle	ss steel											
				Sealing	g mater	rial*										
				Т	PTFE											
					Displa	cement	body									
					S			plunger	, chromi	um diox	ide-coa	ted				
					_		end ve		,							
						0		e spring	ıs							
						1		lve spri	•							
						l		ulic con	•	•						
							0		rd conn							
							4			nd insert						
							4			ilu iliseii						
								Versio		roMinen	® 1		_			
								0					е			
								2		Minent®	0 /					
								A		roMinen	•					
								В		roMinen	•					
								С		roMinen						
								D		roMinen	l® logo,	with frai	me, qua	druplex		
								M	Modifie	ed						
										cal pow						
									S				Hz (WB	•		
									R	· · ·						
									V (0)	(0) Motor with integrated frequency converter						
									P	3 ph. 230/400 V 60 Hz (Exe, Exd)						
									L	3 ph. 23	30/400 \	/ 50 Hz	(Exe, E	xd)		
									V (2)	Motor v	vith inte	grated fi	requenc	y converter (Exd)		
									5	No mot	or, with	IEC 100	gearbo	OX .		
									6	No mot	or, with	IEC 112	gearbo	OX		
									0	No motor, with IEC 112 gearbox No motor, no gearbox						
											ure rati					
										0			d) ISO d	lass F		
										1	,	rsion AT	•			
										2		rsion AT				
										A		ower e				
										, ,		senso				
											0		ı ke sens	or .		
											1					
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
														adjustment		
	1	1					1					0		length adjustment, man.		
												3		0-20 mA stroke controller		
												4		4-20 mA stroke controller		
												5	115 V	0-20 mA stroke controller		
												6	115 V	4-20 mA stroke controller		
	1	1					1					G	Contro	I drive 230 V 0-20 mA Exde		
												Н	Contro	I drive 230 V 4-20 mA Exde		
													Applic			
													0	Standard		
													3	Temperature up to -20 °C		
													_	- Promote all the many		

^{*} Digits 1 - 3=back pressure [bar]; digits 4 - 7=feed rate [l/h]

Materials in Contact With the Medium

	Liquid end	Suction/pressure connector	Valve seat/ seals	Valve balls	Plunger
Makro 5/50 HKDN 8-DN 10	Stainless steel 1.4571/1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
Makro 5/50 HKDN 15-DN 25	Stainless steel 1.4571/1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4401	Stainless steel/ ceramic
Makro 5/50 HKDN 32-DN 65	Stainless steel 1.4571/1.4404	1.4581/1.4404	PTFE/PTFE	Stainless steel 1.4404 (plate/spring)	Stainless steel/ ceramic

The permissible priming pressure on the suction side is approx. 50% of the max. permissible back pressure.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10%	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information. Motors for Sigma basic pumps, special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.19.3 **Spare Parts Kits**

Spare parts kit for Makro/ 5, consisting of:

- Valve balls
- Valve plate with spring
- Ball seat discs
- Plunger packings made from PTFE/graphite
- Piston guide bands
- Flat seals / O-rings

	Order no.
Spare parts kit for Makro/ 5 FK 17/50 S DN 8	1005899
Spare parts kit for Makro/ 5 FK 17/50 S DN 10	1005536
Spare parts kit for Makro/ 5 FK 23/50 S DN 10	1005004
Spare parts kit for Makro/ 5 FK 23/50 S DN 15	1005900
Spare parts kit for Makro/ 5 FK 30/50 S DN 15	1005901
Spare parts kit for Makro/ 5 FK 30/50 S DN 20	1005537
Spare parts kit for Makro/ 5 FK 40/50 S DN 20	1005902
Spare parts kit for Makro/ 5 FK 40/50 S DN 25	1005538
Spare parts kit for Makro/ 5 FK 50/50 S DN 25	1005539
Spare parts kit for Makro/ 5 FK 60/50 S DN 25	1005903
Spare parts kit for Makro/ 5 FK 60/50 S DN 32	1005540
Spare parts kit for Makro/ 5 FK 70/50 S DN 32	1005541
Spare parts kit for Makro/ 5 FK 70/50 S DN 40	1005904
Spare parts kit for Makro/ 5 FK 85/50 S DN 40	1005542
Spare parts kit for Makro/ 5 FK 85/50 S DN 50	1005905
Spare parts kit for Makro/ 5 FK 100/50 S DN 50	1005543
Spare parts kit for Makro/ 5 FK 130/50 S DN 65	1005544

2.20 Plunger Metering Pump Orlita® Evolution 1

2.20.1

P_PZ_0019_SW1

Plunger Metering Pump Orlita® Evolution

Plunger Metering Pump Orlita® Evolution 1

Simple and flexible.

Capacity range of single pump: 5 - 511 l/h; 293 - 8 bar

The high-performance plunger metering pump ORLITA® Evolution 1 enables precise pump capacities even at maximum pressure and temperatures of up to + 200 °C. The ORLITA® Evolution pump has a modular construction and thus versatile uses.

The Orlita® Evolution plunger metering pumps EP1a and EP2a form an integrated product range with stroke lengths of 15 mm. This covers a capacity range from 5 to 511 l/h at 293 - 8 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than \pm 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation.
- Excellent hydraulic efficiency

Excellent flexibility:

- The modular and compact construction with single and multiple pump versions permits a wide range of applications. In multiple pump systems up to 5 metering units can be combined, including units with different pump capacities
- 7 gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details

- Stroke length: 0 15 mm, Rod force: 2,300 N
- Stroke length adjustment: 0 100 %
- Stroke length adjustment range: 0 100 % in operation and idle
- The plunger packing can be tightened by the tensioning screw on the front even during operation
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 200 °C
- Design in compliance with API 675 among others

Field of application

- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical / petrochemical industry
- Pharmaceuticals & cosmetics
- Packaging industry (bottling pumps)
- Maximum temperature applications of up to + 200 °C

2.20 Plunger Metering Pump Orlita® Evolution 1

Technical data for EP1a single pump 50 Hz SST

Plunger Ø	Stroke volume	The	eoretical	pump ca	pacity in	I/h at str	okes/min	(50 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
10	1.18	5.2	6.9	8.2	10.2	11.7	12.8	14.2	293	0.89	0.93	DN 6
12	1.70	7.4	9.9	11.8	14.8	16.8	18.4	20.5	203	0.89	0.93	DN 6
14	2.31	10.1	13.4	16.1	20.1	22.9	25.1	27.8	149	0.89	0.93	DN 6
17	3.40	14.9	19.8	23.7	29.6	33.7	37.0	41.1	101	0.90	0.90	DN 10
21	5.20	22.8	30.3	36.2	45.2	51.4	56.4	62.7	66	0.93	0.95	DN 10
25	7.36	32.2	42.9	51.2	64.1	72.9	80.0	88.8	47	0.93	0.95	DN 10
29	9.91	43.4	57.7	69.0	86.2	98.1	107.6	119.5	35	0.96	0.98	DN 10
32	12.06	52.8	70.2	84.0	105.0	119.4	131.0	145.4	29	0.96	0.98	DN 16
38	17.01	74.5	99.0	118.4	148.0	168.4	184.7	205.2	20	0.96	0.98	DN 16
44	22.81	99.9	132.7	158.7	198.4	225.8	247.7	275.1	15	0.96	0.98	DN 16
50	29.45	129.0	171.4	205.0	256.2	291.6	319.9	355.2	12	0.96	0.98	DN 16
58	39.63	173.6	230.7	275.8	344.8	392.3	430.4	478.0	9	0.96	0.98	DN 16
60	42.41	185.8	246.8	295.2	369.0	419.9	460.6	511.5	8	0.96	0.98	DN 16

Technical data for EP1a single pump 60 Hz SST

Plunger Ø	Stroke volume	Theoretica	al pump ca	pacity in I/I	h at strokes	s/min (60 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
10	1.18	6.2	8.3	9.9	12.4	14.1	293	0.89	0.93	DN 6
12	1.70	9.0	11.9	14.3	17.8	20.3	203	0.89	0.93	DN 6
14	2.31	12.2	16.2	19.4	24.2	27.6	149	0.89	0.93	DN 6
17	3.40	18.0	23.9	28.6	35.7	40.7	101	0.90	0.90	DN 10
21	5.20	27.4	36.5	43.6	54.6	62.0	66	0.93	0.95	DN 10
25	7.36	38.9	51.7	61.9	77.3	87.9	47	0.93	0.95	DN 10
29	9.91	52.3	69.6	83.2	104.0	118.3	35	0.96	0.98	DN 10
32	12.06	63.7	84.7	101.3	126.7	144.0	29	0.96	0.98	DN 16
38	17.01	89.8	119.4	142.9	178.6	203.1	20	0.96	0.98	DN 16
44	22.81	120.4	160.1	191.6	239.5	272.3	15	0.96	0.98	DN 16
50	29.45	155.5	206.8	247.4	309.3	351.7	12	0.96	0.98	DN 16
58	39.63	209.3	278.2	332.9	416.1	473.2	9	0.96	0.98	DN 16
60	42.41	223.9	297.7	356.3	445.3	506.4	8	0.96	0.98	DN 16

Note:

Abridged presentation of our complete product range. Other piston diameters (8-60 mm) on request.

Materials in Contact With the Medium

Ball valve DN 6 - DN 10

	Suction/ pressure connector	Valve/ head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 16 - DN 20

	Suction/ pressure connector	Valve/ head seal	Valve plate	Valve seat	Valve housing
DN 16/DN 20	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.21 Plunger Metering Pump Orlita® Evolution 2

2.21.1

P_PZ_0019_SW1

Plunger Metering Pump Orlita® Evolution

Plunger Metering Pump Orlita® Evolution 2

Simple and flexible.

Capacity range of single pump: 5 - 511 l/h; 520 - 19 bar

The high-performance plunger metering pump ORLITA® Evolution 1 enables precise pump capacities even at maximum pressure and temperatures of up to + 200 °C. The ORLITA® Evolution pump has a modular construction and thus versatile uses.

The Orlita® Evolution plunger metering pumps EP1a and EP2a form an integrated product range with stroke lengths of 15 mm. This covers a capacity range from 5 to 511 l/h at 520 – 19 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation.
- Excellent hydraulic efficiency

Excellent flexibility:

- The modular and compact construction with single and multiple pump versions permits a wide range of applications. In multiple pump systems up to 5 metering units can be combined, including units with different pump capacities
- 7 gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details

- Stroke length 0 15 mm, rod force: 5,400 N
- Stroke length adjustment range: 0 100 % in operation and idle
- The plunger packing can be tightened by the tensioning screw on the front even during operation
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 200 °C
- Design in compliance with API 675 among others

Field of application

- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical / petrochemical industry
- Pharmaceuticals & cosmetics
- Packaging industry (bottling pumps)
- Maximum temperature applications of up to + 200 °C

2.21 Plunger Metering Pump Orlita® Evolution 2

Technical data for EP2a single pump 50 Hz SST

Plunger Ø	Stroke volume	The	oretical	pump ca	pacity in	I/h at stro	(50 Hz)	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
10	1.18	5.2	6.9	8.2	10.2	11.7	12.8	14.2	520	0.89	0.93	DN 6
12	1.70	7.4	9.9	11.8	14.8	16.8	18.4	20.5	477	0.89	0.93	DN 6
14	2.31	10.1	13.4	16.1	20.1	22.9	25.1	27.8	351	0.89	0.93	DN 6
17	3.40	14.9	19.8	23.7	29.6	33.7	37.0	41.1	238	0.91	0.94	DN 10
21	5.20	22.8	30.2	36.2	45.2	51.4	56.4	62.7	156	0.93	0.95	DN 10
25	7.36	32.3	42.9	51.2	64.1	72.9	80.0	88.8	110	0.93	0.95	DN 10
29	9.91	43.4	57.7	69.0	86.2	98.1	107.6	119.5	82	0.96	0.98	DN 10
32	12.06	52.8	70.2	84.0	105.0	119.4	131.0	145.5	67	0.96	0.98	DN 16
38	17.01	74.5	99.0	118.4	148.0	168.4	184.7	205.2	48	0.96	0.98	DN 16
44	22.81	99.9	132.7	158.7	198.4	225.8	247.7	275.1	36	0.96	0.98	DN 16
50	29.45	129.0	171.4	205.0	256.2	291.6	319.9	355.2	28	0.96	0.98	DN 16
58	39.63	173.6	230.7	275.8	344.8	392.3	430.4	478.0	20	0.96	0.98	DN 16
60	42.41	185.8	246.8	295.2	369.0	419.9	460.6	511.5	19	0.96	0.98	DN 16

Technical data for EP2a single pump 60 Hz SST

Plunger Ø	Stroke volume	Theoretica	Theoretical pump capacity in I/h at strokes/min (60 Hz)				Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
								pressure	pressure	
10	1.18	6.2	8.3	9.9	12.4	14.1	520	0.89	0.93	DN 6
12	1.70	9.0	11.9	14.3	17.8	20.3	477	0.89	0.93	DN 6
14	2.31	12.2	16.2	19.4	24.2	27.6	351	0.89	0.93	DN 6
17	3.40	18.0	23.9	28.6	35.7	40.7	238	0.89	0.93	DN 10
21	5.20	27.4	36.5	43.6	54.6	62.0	156	0.93	0.95	DN 10
25	7.36	38.9	51.7	61.9	77.3	87.9	110	0.93	0.95	DN 10
29	9.91	52.3	69.6	83.2	104.0	118.3	82	0.96	0.98	DN 10
32	12.06	63.7	84.7	101.3	126.7	144.0	67	0.96	0.98	DN 16
38	17.01	89.8	119.4	142.9	178.6	203.1	48	0.96	0.98	DN 16
44	22.81	120.4	160.1	191.6	239.5	272.3	36	0.96	0.98	DN 16
50	29.45	155.5	206.8	247.4	309.3	351.7	28	0.96	0.98	DN 16
58	39.63	209.3	278.2	332.9	416.1	473.2	20	0.96	0.98	DN 16
60	42.41	223.9	297.7	356.3	445.3	506.4	19	0.96	0.98	DN 16

Note:

Abridged presentation of our complete product range. Other types on request. Plunger diameter 11 - 80 mm.

Materials in Contact With the Medium

Ball valve DN 6 - DN 10

	Suction/ pressure connector	Valve/ head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 16

	Suction/ pressure connector	Valve/ head seal	Valve plate	Valve seat	Valve housing
DN 16	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.22 Plunger Metering Pump Orlita® PS

2.22.1

Plunger Metering Pump Orlita® PS

Orlita® PS - simple, robust and reliable.

Capacity range of single pump: 0 - 37,000 l/h, 400 - 4 bar

The high-performance plunger metering pump ORLITA® PS enables precise pump capacities even at maximum pressure and temperatures of up to +400 °C. The ORLITA® PS pump has a modular construction and thus versatile uses.

ORLITA® PS plunger metering pumps (PS 18 to PS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 37,000 l/h at 400 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® PS product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working

Your benefits

Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than ± 0.5 % within the 10-100% stroke length range under defined conditions and with correct installation.
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)
- Excellent hydraulic efficiency

Excellent flexibility:

- The modular construction ensures a wide range of uses
- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details

- PS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- PS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- PS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- PS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- PS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- PS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- The plunger packing can be tightened by the tensioning screw on the front even during operation
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- Design in compliance with API 675 among others

Field of application

- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Packaging industry (bottling pumps)
- Maximum temperature applications of up to +400 °C

P_ORL_071_SW1 Orlita® PS 18-36

P ORL 072 SW1 Orlita® PS 80-30

P ORL 073 SW1 Orlita® PS 18-12 high-temperature

P_ORL_074_SW1 Orlita® PS 35-7-7

P ORL 075 SW1 Orlita® PS 600-40-40-40

2.22 Plunger Metering Pump Orlita® PS

Pump type	Plunger Ø	Stroke volume	N	lax. capa	acity (the	eo.) in I/I	n at strok	ces/min (50 Hz)	Max. pressure
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 18/	5	0.29	1.0	1.2	1.6	1.9	2.5	3.6	250
PS 18/	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	250
PS 18/	7	0.58	2.0	2.5	3.1	3.8	5.0	7.1	250
PS 18/	8	0.75	2.6	3.2	4.1	5.0	6.5	9.3	250
PS 18/	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	200
PS 18/	12	1.70	5.9	7.3	9.2	11.3	14.7	21.0	139
PS 18/	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	78
PS 18/	20	4.71	16.4	20.5	25.6	31.5	41.0	58.5	50
PS 18/	25	7.36	25.6	32.0	40.0	49.2	64.0	91.5	32
PS 18/	30	10.60	36.9	46.1	57.6	70.9	92.2	131.7	16
PS 18/	36	15.27	53.1	66.4	83.0	102.1	132.8	189.7	15
PS 18/	40	18.85	65.6	82.0	102.4	126.1	163.9	234.2	10
PS 18/	50	29.45	102.4	128.1	160.1	197.1	256.2	366.0	8

Pump type	Plunger Ø	Stroke volume	Max. ca	n (50 Hz)	Max. pressure				
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	630
PS 35/	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	400
PS 35/	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	400
PS 35/	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	250
PS 35/	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	156
PS 35/	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	100
PS 35/	25	9.82	34.1	42.7	53.3	65.7	85.4	122.0	64
PS 35/	30	14.14	49.2	61.5	76.8	94.6	122.9	175.7	44
PS 35/	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	30
PS 35/	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	25
PS 35/	50	39.27	136.6	170.8	213.5	262.8	341.6	488.0	16
PS 35/	65	66.37	230.9	288.6	360.8	444.1	577.3	824.8	9
PS 35/	80	100.53	349.8	437.3	546.6	672.7	874.6	1,249.4	6
PS 35/	100	157.08	546.6	683.3	854.1	1,051.2	1,366.5	1,952.2	4

Pump type	Pump type Plunger Stroke Ø volume				Max. capacity (theo.) in I/h at strokes/min (50 Hz)						
			78	98	122	134	155	182	193		
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	
PS 80/	20	6.28	29	37	46	50	58	68	72	400	
PS 80/	25	9.82	45	57	71	79	91	107	113	250	
PS 80/	30	14.14	66	83	103	113	131	154	163	178	
PS 80/	36	20.36	95	119	149	164	189	222	235	123	
PS 80/	40	25.13	117	148	184	202	233	274	290	100	
PS 80/	50	39.27	183	231	287	316	365	428	453	64	
PS 80/	60	56.55	264	333	414	455	526	617	653	44	
PS 80/	65	66.37	310	390	486	535	617	724	766	37	
PS 80/	80	100.53	470	592	736	810	935	1,097	1,161	25	
PS 80/	100	157.08	734	925	1,150	1,266	1,461	1,714	1,814	16	
PS 80/	125	245.44	1,148	1,445	1,797	1,978	2,283	2,679	2,835	10	
PS 80/	140	307.88	1,440	1,813	2,254	2,482	2,864	3,360	3,557	8	
PS 80/	160	402.12	1,880	2,368	2,944	3,242	3,741	4,389	4,646	6	

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.22 Plunger Metering Pump Orlita® PS

Pump type	Plunger Ø	Stroke volume	Max. ca	(50 Hz)	Max. pressure				
			107	117	134	152	171	200	
	mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	bar
		stroke							
PS 180/	30	28.27	181	199	226	257	290	339	229
PS 180/	36	40.72	262	286	326	370	417	489	159
PS 180/	40	50.27	323	353	403	457	515	604	125
PS 180/	50	78.54	505	552	630	714	805	943	80
PS 180/	54	91.61	589	644	735	833	939	1,100	70
PS 180/	65	132.73	854	934	1,065	1,207	1,361	1,594	48
PS 180/	70	153.94	990	1,083	1,235	1,400	1,579	1,849	40
PS 180/	80	201.06	1,293	1,415	1,613	1,829	2,062	2,416	32
PS 180/	94	277.59	1,786	1,953	2,227	2,526	2,847	3,335	23
PS 180/	125	490.87	3,158	3,455	3,939	4,467	5,036	5,898	13
PS 180/	140	615.75	3,962	4,334	4,941	5,603	6,317	7,399	10
PS 180/	160	804.25	5,175	5,660	6,454	7,318	8,251	9,664	8
PS 180/	200	1,256.64	8,086	8,845	10,085	11,435	12,892	15,100	5

Pump type	Plunger Ø	Stroke volume	Max. ca	Max. pressure					
			99	117	134	156	173	204	
	mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	bar
		stroke							
PS 600/	30	28.27	168	198	227	264	293	345	400
PS 600/	36	40.27	242	285	327	381	422	497	353
PS 600/	40	50.27	299	352	403	470	521	614	286
PS 600/	50	78.54	467	551	630	735	814	959	183
PS 600/	54	91.61	545	643	735	857	949	1,119	157
PS 600/	65	132.73	789	932	1,067	1,243	1,376	1,621	100
PS 600/	70	153.94	916	1,080	1,236	1,441	1,596	1,880	93
PS 600/	80	201.06	1,196	1,411	1,616	1,882	2,084	2,456	71
PS 600/	94	277.59	1,651	1,949	2,229	2,599	2,878	3,391	51
PS 600/	125	490.87	2,921	3,446	3,946	4,596	5,090	5,998	29
PS 600/	140	615.75	3,664	4,323	4,951	5,766	6,385	7,523	23
PS 600/	160	804.25	4,785	5,647	6,466	7,531	8,339	9,827	16
PS 600/	200	1,256.64	7,477	8,823	10,104	11,768	13,030	15,354	11

Pump type I	Plunger Ø	Stroke volume	Max. c	(50 Hz)	Max. pressure				
			93	106	125	143	169	191	
	mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	bar
		stroke							
PS 1400/	40	75.40	419	480	565	647	766	864	400
PS 1400/	50	117.81	654	750	884	1,011	1,197	1,350	275
PS 1400/	60	169.65	943	1,080	1,273	1,456	1,724	1,944	190
PS 1400/	70	230.91	1,283	1,470	1,733	1,983	2,346	2,646	140
PS 1400/	80	301.59	1,676	1,920	2,263	2,590	3,065	3,456	107
PS 1400/	94	416.39	2,314	2,651	3,125	3,576	4,231	4,772	77
PS 1400/	125	736.31	4,093	4,689	5,527	6,323	7,483	8,439	44
PS 1400/	140	923.63	5,134	5,882	6,933	7,932	9,387	10,587	35
PS 1400/	160	1,206.37	6,706	7,683	9,055	10,360	12,261	13,827	25
PS 1400/	200	1,884.96	10,478	12,005	14,149	16,188	19,157	21,606	17
PS 1400/	280	3,694.51	20,538	23,530	27,732	31,729	37,549	42,348	8

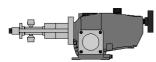
Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.23 Plunger Metering Pump Orlita® DR

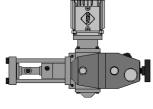
2.23.1


Plunger Metering Pump Orlita® DR

For the precise metering of high-viscosity and extremely high-viscosity media even containing solid fractions

Capacity range of single pump: 0 - 4,000 l/h, 400 - 4 bar

The plunger metering pump Orlita® DR does not need valves and can be operated within a broad stroke rate range. It is therefore suitable for use with high-viscosity and extremely high-viscosity media of up to 106 mPas within a wide temperature range from -40 °C to 400 °C, for example in the food industry.

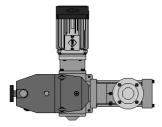

P ORL 0020 SW Orlita® DR

Orlita® DR plunger metering pumps (DR 15 to DR 150) are special pumps for high-viscosity and extremely high-viscosity media, which can also contain solids. The pump can be operated within a broad stroke rate range due to its operation without valves.

Your benefits

Optimum adaptation to processes with high-viscosity and extremely high-viscosity media, even containing solid fractions:

- Low-wear and precise operation even at high pressures, thanks to the rotary plunger with abrasionresistant / wear-resistant surface coating
- Valve-free operation guarantees a broad stroke rate range
- Wide range of uses: Operating pressure of up to 400 bar, temperature range of 40 $^{\circ}$ C to + 400 $^{\circ}$ C
- Pump direction can be selected depending on the fitting position of the plunger
- A reverse suction effect is continuously adjustable by rotating the pump head around its longitudinal axis
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Excellent hydraulic efficiency
- 4 different gear ratios are available
- Customised designs are available on request


P ORL 0021 SW Orlita® DR 15/12

P_ORL_0022_SW

Orlita® 150/90

Technical Details

- DR 15 Stroke length: 0-15 mm, Rod force: 1,800 N
- DR 150 Stroke length: 0-32 mm, Rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 to 100% under defined conditions and with proper installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- The interplay between the plunger and cylinder responsible for the sealing effect, is selected depending on the viscosity
- Turret on the rear head end as a circular collecting vessel
- The turret is sealed by elastomer lip sealing rings
- Design in compliance with API 675 among others

P ORL 0023 SW Orlita® DR 150/90

Field of application

Metering of high-viscosity and extremely high-viscosity media containing some solid fractions, for example in the food industry.

2.23 Plunger Metering Pump Orlita® DR

Pump type	Plunger Ø	Stroke volume	Capacity max	Max. pressure		
			58	77	116	
	mm	ml/stroke	l/h	l/h	l/h	bar
DR 15/	7	0.58	2.0	2.6	4.0	400
DR 15/	12	1.70	5.9	7.8	11.8	159
DR 15/	18	3.82	13.2	17.7	26.5	70
DR 15/	25	7.36	25.6	34.1	51.2	36
DR 15/	36	15.27	53.1	70.8	106.2	17
DR 15/	50	29.45	102.4	136.6	204.9	9
DR 15/	70	57.73	200.8	267.8	401.7	4

Pump type	Plunger Ø	Stroke volume	Capacity n	Max. pressure			
			58	77	116	145	
	mm	ml/stroke	l/h	l/h	l/h	l/h	bar
DR 150/	12	3.62	12.5	16.7	25.1	31.4	400
DR 150/	18	8.14	28.3	37.7	56.6	70.8	400
DR 150/	25	15.71	54.6	72.8	109.3	136.6	250
DR 150/	36	32.57	113.3	151.1	226.7	283.3	147
DR 150/	50	62.83	218.6	291.5	437.3	546.6	76
DR 150/	70	123.15	428.5	571.4	857.1	1,071.4	38
DR 150/	90	203.58	708.4	944.5	1,416.8	1,771.1	23
DR 150/	120	361.91	1,259.4	1,679.2	2,518.9	3,148.6	13
DR 150/	140	492.60	1,714.2	2,285.6	3,428.5	4,285.6	9

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.24 Diaphragm Process Pump Zentriplex

2.24.1


Diaphragm Process Pump Zentriplex

The innovative process metering pump with the ideal dimensions and excellent efficiency. Capacity range 424 - 8,000 l/h, 367 - 36 bar

The Zentriplex guarantees excellent performance and provides outstanding efficiency as an oscillating triplex process diaphragm pump, with an extremely small footprint thanks to the space-saving arrangement of the pump and drive unit. It also stands out on account of its efficiency, as minimal material and labour are required.

The Zentriplex is an oscillating process diaphragm metering pump, which has a very small footprint thanks to its unconventional design, as the pump and drive unit are mounted above each other to save space. Diaphragm dosing heads and hydraulic units are arranged in a star pattern around the drive unit, resulting in minimised loads and significantly lower material and drive requirements. The Zentriplex is designed in compliance with API 674.

P PZ 0009 SW1

customer-side connection)

Process diaphragm pump Zentriplex (1=

Your benefits

Excellent conservation of resources:

- Excellent energy efficiency.
- Diaphragm replacement without dismantling the suction and discharge lines ensures cost-effective maintenance of the pump
- Low noise emissions
- Very quiet thanks to complete balancing of masses
- Only one connection required by the customer. Collective discharge and suction lines are integrated in the pump
- Low flow rate pulsation
- Customised designs are available on request

Technical Details

- Stroke length: 40 mm, Rod force: 18,000 N fixed stroke pump
- Metering reproducibility is better than ± 1% under defined conditions and with proper installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of motor versions is available: Three-phase standard motors with varied adjustment ranges, motors for use in Exe and Exde areas, different flange designs for use in customer-specific
- Degree of protection: IP 55
- Design in compliance with API 674

Field of application

- Chemical industry
- Petrochemical industry
- Refineries
- Oil and gas industry

Process Metering Pumps

2.24 Diaphragm Process Pump Zentriplex

Technical Data

Plunger Ø	Stroke volume	Theoreti	eoretical pump capacity Q _{th} at a stroke rate n in			rate n in	Max.	Efficiency at	Efficiency at	Standard type of
		120 [3]	145 [4]	170 [5]	200 [6]	220 [7]	pressure			valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
25	58.90	424	512	601	707	778	367	0.78	0.83	DN 10
26	63.71	459	554	650	765	841	339	0.78	0.83	DN 10
30	84.82	611	738	865	1,018	1,120	255	0.81	0.85	DN 15
36	122.15	879	1,063	1,246	1,466	1,612	177	0.84	0.87	DN 20
44	182.46	1,314	1,587	1,861	2,190	2,409	118	0.85	0.88	DN 20
60	339.29	2,443	2,952	3,461	4,072	4,479	64	0.90	0.92	DN 25
70	461.81	3,325	4,018	4,711	5,542	6,096	47	0.90	0.92	DN 32
80	603.19	4,343	5,248	6,152	7,238	7,962	36	0.90	0.92	DN 32

Note:

Abridged presentation of our complete product range. Other piston diameters (14 - 75 mm) on request

Materials in Contact With the Medium

Dosing head compl	ete		Manifold			
Dosing head	Diaphragm retaining screw	Diaphragm	Suction/pressure connector	Seal, manifold		
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm	Stainless steel 1.4571	Viton O-ring with seamless FEP jacket		
	Ball valve DN 10					
Suction/pressure connector	Seal valve/head	Valve ball	Valve seat	Valve housing		
Stainless steel 1.457	1 Stainless steel 1.4571	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404		
Plate valve DN 15 / DN 20 / DN 25 / DN 32						
Suction/pressure Seal valve/head connector		Valve plate	Valve seat	Valve housing		
Stainless steel 1.457	1 Stainless steel 1.4571	Stainless steel 1.44	162 Stainless steel 1.4571	Stainless steel 1.4571		

Further material versions and details available on request.

Motor and Gearbox Data

 $Motors \ and \ gearboxes \ from \ 7.5 \ to \ 15 \ kW \ are \ available \ for \ the \ Zentriplex \ product \ range. \ Further \ options \ and \ and \ and \ and \ are \ available \ for \ the \ Zentriplex \ product \ range.$ details available upon request.

Statidatu geat motor 7.5 kw, 9.2 kw, 11 kw, 15 kw	3 pm, ir 33	400/0901	30/00 112	Control range 1.5
Ex gear motor EExde IICT4 11 kW, 15 kW	3 ph, IP 65	400/690V	50/60 Hz	Control range 1:5
Standard external gearbox 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Standard external gearbox 11 kW15 kW	IP 55			NEMA flange version
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			NEMW flange version

2.25 Hydraulic/Mechanical Accessories

Hydraulic/mechanical accessories

Hydraulic / mechanical accessories for metering pumps such as injection valves and foot valves, can be found in Chapter 1.5, sorted by nominal width DN $8\dots$ DN 40:

Please observe the permitted pressure ratings or material combinations when selecting. Further accessories are available on request.

Electrical accessories

Accessories for metering pumps, such as frequency converters etc., can be found in Chapter 1.6, sorted by motor capacity DN $8\dots$ DN 40.

2.25.1 Return/Pressure Relief Valve, Spring-loaded

Spring-loaded valves, inline version, designed as pump valves, i.e. to cope with a very high number of load cycles. Also suitable for use without pulsation damper.

Features:

- Female thread on both sides or with sealing surface
- For bracing between 2 flanges
- PN 200 or PN 400
- Settings factory-set
- Standard design in stainless steel, hastelloy also available on request, as is Inconel

Also available heatable on request.

DN	Adjustable pressure	Construction	Order no.
6	2.0 bar	Ball	1020074
6	4.0 bar	Ball	1019224
6	8.0 – 9.0 bar	Ball	1019097
10	2.0 bar	Cone, fixed	1019649
10	3.0 – 6.0 bar	Cone, adjustable	1023053
10	8.0 – 14.0 bar	Cone, adjustable	1024065
16	2.0 bar	Cone, fixed	1017937
16	3.0 bar	Cone, fixed	1035266
16	4.5 – 5.4 bar	Cone, fixed	1017936
25	1.0 – 2.0 bar	Cone, fixed	1021843

2.25 Hydraulic/Mechanical Accessories

2.25.2

Safety Valve

Regulations:

Safety valves are designed to comply with the following regulations:

- Pressurised Vessel and Steam Boiler Directive
- TRD 421, 721
- TRB 403
- AD 2000 Bulletins A2 and A4
- **DIN EN ISO 4126**
- Pressure Equipment Directive 97/23/EC
- ASME Code, Sections II and VIII
- API 526, 520, 527

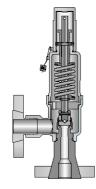
The relevant product-specific certificates are available to prove compliance with these regulations and thus also the safety of the products.

Safety valves carry a parts label (specification label) stipulating the following data:

- Order date (serial no.)
- Technical data
- Set pressure
- VdTÜV Parts test number
- CE mark with number of nominated centre
- Further data, e.g. UV stamp with ASME-approved safety valves

Inspection / Labelling:

Following adjustment and inspection, every safety valve is sealed by the manufacturer.


Connectors: NPT threaded connectors, threaded sockets, flange mountings comply with DIN / ANSI. Other connections are available on request.

Material description	X 14 CrNiMo 17-12-2
Material no.	1.4404
ASME	316L

Dimensions, pressure ranges, weights	Standard 10 mm
Pressure rating at inlet	320 PN
Pressure rating at outlet	160 PN
Min. response pressure	0.1 bar
Max. response pressure (4373 / 4374)	68 bar
Narrowest flow cross-section	78.5 mm ²
Narrowest flow diameter	10 mm
Leg length (outlet / inlet)	30 mm / 33 mm
Pin length (G 1/2 / G 3/4)	15 mm / 16 mm
Flange design	100 mm
Height (H2 / H4)	137/162 mm
Weight	1.2 kg

P_AC_0231_SW

P_AC_0232_SW

2.25 Hydraulic/Mechanical Accessories

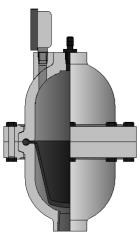
2.25.3

Pulsation Damper

Pulsation dampers with separating membrane / bubble / bellows for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing flow resistance in long metering lines and with viscous media. The response pressure of the gas cushion should be approx. 60-80% of the operating pressure.

Important: A pressure relief valve should always be fitted with an adjustable back pressure valve when using a pulsation damper.

Bladder dampers, metal


0.066 - 379 | Volume Pressure 20.7 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, PTFE

Further material versions and details available on request.

P_AC_0258_SW1

Bladder damper, plastic

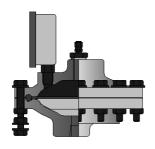
Volume 0.066 - 19 | **Pressure** 17.2 bar Material of bladder/diaphragm EPDM or FKM **PVDF** Housing material

Further material versions and details available on request.

P_AC_0259_SW1

2.25 Hydraulic/Mechanical Accessories

P_AC_0260_SW1


Bladder damper, high pressure

Volume 0.13 - 0.39 | Pressure 793 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

Diaphragm damper with PTFE diaphragm

Volume 0.20 137 bar Material of bladder/diaphragm PTFE

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

P_AC_0261_SW1

ProMinent®

Data Required for Specification of Metering Pump and Accessories

Pump Specification Data

Min./max. required feed rate	l/h
Available power supply	V,Hz
Min./max. operating temperature	°C
Properties of process chemical	
Name, concentration %	
Solids content %	
Dynamic viscosity mPa (= cP)	
Vapour pressure at operating temperature	bar
Remarks, e.g. abrasive,	
gaseous, flammable,	
corrosive towards	
Suction conditions:	
Min./max. suction lift	m
Min./max. positive suction head	m
Pressure in chemical tank	bar
Suction line length	m
Suction line diameter	mm
Discharge conditions:	
Min./max. back pressure	bar
Min./max. discharge head	m
Min./max. negative discharge head	m
Discharge line length	m
Discharge line diameter	mm
Number of valves and fittings in	
suction and discharge line	
Data required for proportional	
dosing:	2.0
Water flow Q min./max.	m ³ /h
Required final concentration	g/m ³ , ppm

Example:

A required dose in $mg/I = g/m^3 = ppm$

(Water flow Q max. 50 m³/h)

Pulse spacing (flow volume per pulse) of water meter 5 l.

 $Process\ fluid = sodium\ hypochlorite\ solution\ Na\ OCI\ with\ 12\ \%\ chlorine\ (by\ weight) = 120\ g/kg = 150\ g/l = 150\ mg/ml$

Selected dosing pump GMXa 1604NPT2 NPB2 with 0.3 ml/per stroke volume, at max. 10800 strokes/h.

Variables: pump type, pulse spacing and concentration. The stroke rate (max. throughput I/h: pulse spacing I/pulse = 50,000 I/h: 5 I/pulse = 10000 pulses/h) must not exceed the max. stroke frequency (10800 strokes/h) of the dosing pump.

Feed quantity =
$$\frac{\text{water throughput Q max. (I/h) x stroke volume (I)}}{\text{pulse spacing (I)}} = \frac{50,000 \text{ I x } 0.0003 \text{ I}}{\text{h x 5 I}} = 3 \text{ I/h}$$

Final dose =
$$\frac{\text{concentration (mg/ml) x stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{150 \text{ mg x } 0.3 \text{ ml}}{\text{ml x 5 I}} = 9 \text{ mg/l}$$

= 9 g/m³
= 9 ppm chlorine Cl₂

SG_0037_DE

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

s	=	saturated solution in water
+	=	resistant
+/0	=	largely resistant
0	=	conditionally resistant
-	=	not resistant
n	=	resistance not known
=>	=	see

=> = See

** = does not apply to glass fibre reinforced material

Concentration data are stated in weight percent, relative to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE:

The elastomers **CSM (Hypalon®)** and **IIR (butyl rubber)** used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70% H ₂ SO ₄ + 5% K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10% CrO ₃
Hydrochloric acid	≥ 25% HCl
Hydrogen peroxide	\geq 5% H ₂ O ₂
Hydrofluoric acid	≥ 0% HF

Explanation of abbreviations used as column headings:

PMMA:	Polymethylmethacrylate (Acrylic resistance)
PVC:	Polyvinylchloride, rigid, (PVC-U) resistance
PP:	Polypropylene resistance
PVDF:	Polyvinylidene fluoride
1.4404:	Stainless steel 1.4404 & 1.4571 resistance
FKM:	Fluorine Rubber (e.g. Viton® A & B) resistance
EPDM:	Ethylene-Propylene-Dien-rubber resistance
PharMed®:	PharMed® resistance
PE:	Polyethylene resistance
2.4819:	Hastelloy C-276 resistance
WGK:	Water endangering class

Viton® is a registered trademark of DuPont Dow Elastomers

Water endangering classes (WGK):

1	= slightly hazardous to water	
2	= hazardous to water	
3	= severely hazardous to water	
(X)	 no classification. Classification according to conclusion by analogy. To be used under reserve. 	

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

^{* =} for bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered. (Materials of the types 'o' and '-' are not recommended!)

The data is taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Acetaldehyde	CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	+	+	2
Acetamide	CH ₃ CONH ₂	s	+	+	+	+	+	0	+	+/0	+	+	1
Acetic Acid	CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	70%	+	1
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	+	0	+	1
Acetic Ether => Ethyl Acetate													
Acetone	CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	+	+	
Acetyl Chloride	CH ₃ COCI	100%	-	+	n	-	0	+	-	0	n	+	1
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	+	+	1
Acetylene Dichloride => Dichloro	0 - 0												
Acetylene Tetrachloride => Tetra	•												
Acrylonitril	CH ₂ =CH-CN	100%		-	+	+	+	-	-	-	+	+	3
Adipic Acid	HOOC(CH ₂) ₄ COOH	s	+	+	+	+	+	+	+	+/0	+	+	1
Allyl Alcohol	CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	0	+	+/0	2
Aluminium Acetate	AI(CH ₃ COO) ₃	s	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium Bromide	AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	2
Aluminium Chloride	AICI ₃	s	+	+	+	+	-	+	+	+	+	+	1
Aluminium Fluoride	AIF ₃	10%	+	+	+	+	-	+	+	+	+	+/0	1
Aluminium Hydroxide	Al(OH) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Aluminium Nitrate	Al(NO ₃) ₃	s	+	+	+	+	+	+	+	+	+	+	1
Aluminium Phosphate	AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Aluminium Sulphate	Al ₂ (SO ₄) ₃	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Acetate	CH ₃ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	1
Ammonium Bicarbonate	NH ₄ HCO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Carbonate	(NH ₄) ₂ CO ₃	40%	+	+	+	+	+	+	+	+	+	+	1
Ammonium Chloride	NH ₄ Cl	S	+	+	+	+	-	+	+	+	+	+/0	1
Ammonium Fluoride	NH ₄ F	s	+	0	+	+	0	+	+	+	+	+	1
Ammonium Hydroxide	"NH₄OH"	30%	+	+	+	+ (25°C)		-	+	+	+	+	2
Ammonium Nitrate	NH ₄ NO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Ammonium Oxalate	(COONH ₄) ₂ * H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Perchlorate	NH ₄ ClO ₄	10%	+	+	+	+	+	+	+	+	+	+	1
Ammonium Peroxodisulphate	(NH ₄) ₂ S ₂ O ₈	S	+	+	+	+	5%	+	+	+	+	5%	2
Ammonium Phosphate	(NH ₄) ₃ PO ₄	s	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium Sulphate	(NH ₄) ₂ SO ₄	s	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium Sulphide	(NH ₄) ₂ SO ₄	S	+	+	+	+	n n	+	+	n	+	n n	2
Ammoniumaluminium Sulphate	$NH_4Al(SO_4)_2$	s	+	+	+	+	+	+	+	+	+	+	1
Amyl Alcohol	C5H ₁₁ OH	100%	+	+	+	+	+	-	+	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100%	-	-	+	+	+	-	+/0	0	+	+	2
Aniline Hydrochloride	C ₆ H ₅ NH ₂ * HCl	s	n				-	+/0	+/0			+	2
Antimony Trichloride	SbCl ₃	s		+	+	+	-	+/0	+/0	0 +	+	n +	2
Aqua Regia	3 HCl + HNO ₃	100%	+	+	+	+	-	-	0	-	-	-	2
Arsenic Acid	0						-			-			3
Barium Carbonate	H ₃ AsO ₄ BaCO ₃	S	+	+	+	+	+	+	+	0	+	+	ა 1
	•	S	+	+	+	+	+	+	+	+	+	+	1
Barium Chloride	BaCl ₂	S	+	+	+	+	-	+	+	+	+	+	•
Barium Hydroxide	Ba(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Barium Nitrate	Ba(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphate	BaSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphide	BaS	S	+	+	+	+	+	+	+	+	+	+	(1)
Benzaldehyde	C ₆ H ₅ CHO	100%	-	-	+	-	+	+	+	-	0	+	1
Benzene Sulphonio Acid	C ₆ H ₆	100%	- n	- n	0	+	+	0	-	-	0	+	3
Benzene Sulphonic Acid	C ₆ H ₅ SO ₃ H	10%	n	n	+	+	+	+	-	/-	n	+	2
Benzoic Acid	C ₆ H ₅ COOH	S 4000/	+	+	+	+	+	+	+	+/0	+	+	1
Benzoyl Chloride	C ₆ H ₅ COCI		-	n	0	n	0	+	+	n	0	+	2
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇	100%		-	+	0	+	+	-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	0	+	2
Bitter Salt => Magnesium Sulpha	ate												
Bleach => Sodium Hypochlorite													

Bleach => Sodium Hypochlorite
Blue Vitriol => Copper Sulphate

Borax => Sodium Tetraborate

Bota Acad HyBOs S. F. F. F. F. F. F. F.	Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Beamine Warre	Boric Acid	H ₃ BO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Beame Marker	Brine		S	+	+/0	+	+	+/0	+	+	+	+	+	1
Bonne Benneme	Bromine (dry)	Br ₂	100%	-	-	-	+	-	-	-	-	-	+	2
Bonne Benneme	Bromine Water	Br ₂ + H ₂ O	s	-	+	-	+	-	-	-	n	-	n	(2)
Bomochison Methane CHgBC 100% - - - - - - - - -	Bromo Benzene		100%	n	n	0	+	+	0	-	-	0	+	` '
Bemonchlorithmore Ehane HCCERCES 100% - 0 + + + - + + 0 + + 1		0 0								+/0	_			
Bilamantici HOC_H_OPH 10% 1				_	_	0					_			
Blamantorio														
Blanden C_1H_0PQ 100%														
Blaryl Acotatale Cythy COC (41)-9 Blaryl Almone Cythy														
Bully Alcohale Bully Burna Bully Burna Bully Alcohale Bully Burna Bully Burna Cajh, NH2 100%														
Blays Amine	•			-	-	+	+	+	-			+	+	-
Barly Almine	Butyl Acetate	CH ₃ COOC ₄ H ₉	100%	-	-	0	+	+	-	+/0	+/0	-	+	1
Bully Bernarder	Butyl Alcohol => Butanol													
Butyl Mercaptane	Butyl Amine	$C_4H_9NH_2$	100%	n	n	n	-	+	-	-	n	+	+	1
Butyl Olerate	Butyl Benzoate	C ₆ H ₅ COOC ₄ H ₉	100%	-	-	0	n	+	+	+	-	0	+	2
Buty Stearate	Butyl Mercaptane	C ₄ H ₉ SH	100%	n	n	n	+	n	+	-	n	n	n	3
Buty Nateare	Butyl Oleate	C22H42O2	100%	n	n	n	+	+	+	+/0	n	n	+	1
Bultyria chick C_H-CODH 100%	•			0	n	n	+	+	+	-	n	n	+	1
Bulyric Acid C_1H_COOP 100% 5% 20% + + + + + + + + + + + + + + + + + + +	•									±/ 0				
Calcium Roberts	, ,	· ,												
Calcium Bisuphitite	•	· ·												
Calcium Chronate CaCo ₃ s + + + + + + + + + + + + + + + + + +		` 0 /2												
Calcium Chloride CaCle Calcium Chloride CaClC(N) S S S S S S S S S S S S S S S S S S S	· · · · · · · · · · · · · · · · · · ·													
Calcium Hydroxide		•	S	+	+	+	+	+	+	+	+	+		
Calcium Hydroxide	Calcium Chloride	CaCl ₂	S	+	+	+	+		+	+	+	+	+	1
Calcium Nypochlorite Ca(Coli) ₂ s + + 0 + <th< td=""><td>Calcium Cyanide</td><td>Ca(CN)₂</td><td>S</td><td>+</td><td>+</td><td>+</td><td>+</td><td>n</td><td>+</td><td>+</td><td>+</td><td>+</td><td>n</td><td>3</td></th<>	Calcium Cyanide	Ca(CN) ₂	S	+	+	+	+	n	+	+	+	+	n	3
Calcium Nitrate	Calcium Hydroxide	Ca(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Calcium Nitrate	Calcium Hypochlorite	Ca(OCI) ₂	S	+	+	0	+	-	0	+	+	+	+	2
Calcium Phosphate Cas(PQ)2	* '					50%		+	+	+	+		+	1
Calcium Sulphate		· • • • • • • • • • • • • • • • • • • •												
Calcium Sulphide	•													
Calcium Sulphite	·													
Calcium Thiosulphate CaS _Q O ₃ s +	· · · · · · · · · · · · · · · · · · ·													
Carbon Disulphide CS2	•		S	+	+	+	+	+	+	+	+	+	+	
Carbon Disulphide CS2 100% - - 0 + + + - - 0 + 2 Carboni Acid "H2CO3" s +	Calcium Thiosulphate	CaS ₂ O ₃	S	+	+	+	+	-	+	+	+	+	+	1
Carbon Tetrachloride CCI ₄ 100% - - + 1 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0 1 10% 2 2 1 1 2 0 0 1 0 0 1 0 0 1 0 <th< td=""><td>Carbolic Acid => Phenole</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Carbolic Acid => Phenole													
Carbonic Acid "H ₂ COg" s + - 0	Carbon Disulphide	CS ₂	100%	-	-	0	+	+	+	-	-	0	+	2
Caustic Potassi	Carbon Tetrachloride	CCI ₄	100%	-	-	-	+	+	+	-	-	0	+	3
Caustic Potassi	Carbonic Acid	"H ₂ CO ₂ "	S	+	+	+	+	+	+	+	+	+	+	1
Caustic Soda \Rightarrow Sodium Hydroxide Chloric Acid HClO3 20% $^{\circ}$		£ 0												
Chloric Acid HClO3 20% + + + - + - + - 0 0 0 + 10% + 2 Chlorinated Lime => Calcium Hypochlorite Chlorinated Lime => Calcium Hypochlorite Chlorine Dioxide Solution ClO2 + H2O		•												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•		200/						_	•		100/		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20%	+	+	-	+	-	U	U	+	10%	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• •					4)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine Dioxide Solution		0.5%	0	+	0	+ 1)	-	0	-	-	0	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine Water			+	+	0	+	-	+	+	-	0	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Benzene	C ₆ H ₅ CI	100%	-	-	+	+	+	+	-	-	0	+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Ethanol		100%	-	-	+	0	+	-	0	+	+	+	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Ethylbenzene	C ₆ H ₄ ClC ₂ H ₅	100%	-	-	0	n	+	0	-	-	0	+	(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Phenole		100%	-	n	+	+	+	n	-	-	+	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-							_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		100%	-	n	+	-	+	+	0	+	+	+	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorosulphonic Acid	SO ₂ (OH)CI	100%	-	0	-	+	-	-	-	-	-	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chrome-alum => Potassium Ch	rome Sulphate												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chromic Acid	H₂CrO₄	50%	-	+*	0	+	10%	+	-	0	+	10%	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	+*			n	n	n	-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cu ₃ (AsO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CuCO ₃	S	+	+	+	+	+	+	+	+	+	+	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Copper-II-Chloride	CuCl ₂	s	+	+	+	+	1%	+	+	+	+	+	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			S	+	+	+	+	+	+	+	+	+	+	(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
Copper-II-Sulphate $CuSO_4$ s + + + + + + + + + + 2														
Olesons O ₆ П4VП3VП 100% 0 0 + + + + + + + 2														
	0169019	0 ₆ П ₄ СП ₃ ОП	100%	U	U	+	+	+	+	-	-	+	+	2

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+	-	+	-	+	+	3
Cubic Nitre => Sodium Nitrate													
Cumene => Isopropyl Benzene													
Cyclo Hexane	C ₆ H ₁₂	100%	+	-	+	+	+	+	-	-	+	0	1
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	-	-	+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100%	-	-	+	-	+	-	+/0	-	+	+	1
Cyclohexyl Alcohol => Cyclohexa													
Cyclohexylamine	C ₆ H ₁₁ NH ₂	100%	n	n	n	n	+	-	n	n	n	+	2
Decahydronaphthaline	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0	-		0	+	2
Decaline => Decahydronaphthale	ene												
Dextrose => Glucose	011 0	1000/				_							
Diacetonalcohol Dibromoethane	C ₆ H ₁₂ O ₂	100%	-	-	+	0	+	-	+		+	+	3
Dibutyl Ether	C ₂ H ₄ Br ₂	100%	-	-	n	+	+	+	0	-		+	2
Dibutyl Phthalate	C ₄ H ₉ OC ₄ H ₉ C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	+	+	+	2
Dibutylamine	(C ₄ H ₉) ₂ NH	100%	n	n	+	+	+	-	-	n	+	+	1
Dichloro Acetic Acid	Cl ₂ CHCOOH	100%	-	+	+	+	+	-	+	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	_	0	+	+	+	-	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-		0	+	+	+	_	_	0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-	-	0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	-	0	+	+	0	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%		-	0	0	0	+	-	0	-	+	2
Dichloroisopropyl Ether	(C ₃ H ₆ CI) ₂ O	100%	-	-	0	n	+	0	0	-	0	+	(2)
Dicyclohexylamine	(C ₆ H ₁₂) ₂ NH	100%	-	-	0	n	+	-	-	-	0	+	2
Diethyleneglycol	C ₄ H ₁₀ O ₃	S	+	+	+	+	+	+	+	+	+	+	1
Diethyleneglycolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	0	+	+	1
Diethylether	C ₂ H ₅ OC ₂ H ₅	100%	-	-	0	+	+	-	-	0	0	+	1
Diglycolic Acid	C ₄ H ₆ O ₅	30%	+	+	+	+	+	+	n	+/o	+	+	3
Dihexyl Phthalate	C ₂₀ H ₂₆ O ₄	100%	-	-	+	+	+	-	n	+	+	+	(1)
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%	-	-	+	+	+	n	n	+	+	+	1
Diisopropylketone	C ₇ H ₁₄ O	100%	-	-	+	+	+	-	+		+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	+	+	+	-	n	+	+	1
Dimethyl Ketone => Acetone													
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	100%	-	-	+	+	+	-	+/0	+	+	+	1
Dimethylformamide	HCON(CH ₃) ₂	100%	-	-	+	-	+	-	+	+/0	+	+	1
Dimethylhydrazine	H ₂ NN(CH ₃) ₂	100%	n	n -	+	n	+	-	+	n	+	+	3
Dioctyl Phthalate Dioxane	$C_4H_4(COOC_8H_{17})_2$ $C_4H_8O_2$	100%	-	-	+	+	+	-	+/o +/o	+	+	+	1
Disodium Hydrogenphosphate	Na ₂ HPO ₄	S	+	+	+	+	+	+	+/0	+	+	+	1
Disulfur Acid Oleum	14a ₂ 111 O ₄	3	т	т	т	т	т	т		т	т	т	
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-		n	n	
DMF => Dimethylformamide	02012	10070		"		'		'					
Engine Oils		100%	n	+/0	+	+	+	+			+	+	2
Epsom salts => Magnesium Sulp	hate	10070		., 0	•	•	•	•					_
Ethanol	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	+	+	+	1
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%	0	n	+	-	+	-	+/0	0	+	+	1
Ethyl Acetate	CH ₃ COOC ₂ H ₅	100%	-	-	35%	+	+	-	+/0	+/0	+	+	1
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅		-	-	+	0	+	-	+/0	-	+	+	2
Ethyl Benzene	C ₆ H ₅ -C ₂ H ₅	100%	-	-	0	+	+	0	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	-	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/0	+/o	+	+	1
Ethylacrylic Acid	C ₄ H ₇ COOH	100%	n	n	+	+	+	n	+/0	n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	+	0	2
Ethylene Dibromide => Dibromoe	ethane												
Ethylene Dichloride => Dichloro E	Ethane												
Ethylene Glycol => Glycol													
Ethylenglycol Ethylether	$HOC_2H_4OC_2H_5$	100%	n	n	+	+	+	n	+/0	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+	-	+	+	2
Fatty Acids	R-COOH	100%	+	+	+	+	+	+	0	0	+	+	1
Ferric Chloride	FeCl ₃	S	+	+	+	+	-	+	+	+	+	+/0	1
Ferric Nitrate	Fe(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Ferric Phosphate	FePO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	$Fe_2(SO_4)_3$	S	+	+	+	+	0	+	+	+	+	+	1

4 1.1.2018

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Ferrous Chloride	FeCl ₂	S	+	+	+	+	-	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Fixing Salt => Sodium Thiosulpha													
Fluoro Benzene	C ₆ H ₅ F	100%	_	-	+	+	+	0	_	-	0	+	2
Fluoroboric Acid	HBF ₄	35%	+		+	+			+	-	+	+	1
	•			+			0	+					
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	0	40%	+/0	2
Formaldehyde	CH ₂ O	40%	+	+	+	+	+	-	+/0	-	+	+	2
Formalin => Formaldehyde													
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	n	+	+	1
Formic Acid	HCOOH	S	-	+/0	+	+	+	-	-	+/o	+	+	1
Furane	C ₄ H ₄ O	100%	-	-	+	-	+	-	n	-	+	+	3
Furane Aldehyde	$C_5H_5O_2$	100%	n	n	n	0	+	-	+/o	-	n	n	2
Furfuryl Alcohol	OC ₄ H ₃ CH ₂ OH	100%	-	-	+	0	+	n	+/0	-	+	+	1
Gallic Acid	C ₆ H ₂ (OH) ₃ COOH	5%	+	+	+	+	+	+	+/0	+	+	+	1
Gasoline	-0 2(- 70	100%	-	_	+	+	+	+	_	-	+	+	2
Glauber's Salt => Sodium Sulpha	nto.	.0070			•	•	•	•			•	•	_
Glucose		•											1
	C ₆ H ₁₂ O ₆	\$	+	+	+	+	+	+	+	+	+	+	
Glycerol	C ₃ H ₅ (OH) ₃	100%	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	$C_3H_5(CH_3COO)_3$	100%	n	n	+	+	+	-	+	n	+	+	1
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	1
Glycol	C ₂ H ₄ (OH) ₂	100%	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%	+	37%	+	+	+	+	+	+/0	+	+	1
Gypsum => Calcium Sulphate													
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-	-	+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	S	n	+	+	+	-	n	+	n	+	-	
Hexanal	- •	100%						-	+/0	-			1
Hexana	C ₅ H ₁₁ CHO		n	n	+	+	+			-	+	+	1
	C ₆ H ₁₄	100%	+	+	+	+	+	+	-	-	+	+	-
Hexanol	C ₆ H ₁₃ OH	100%	-	-	+	+	+	n	+	0	+	+	1
Hexantriol	C ₆ H ₉ (OH) ₃	100%	n	n	+	+	+	+	+	n	+	+	1
Hexene	C ₆ H ₁₂	100%	n	+	+	+	+	+	-	-	+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	s	+	+	+	+	+	n	+	0	+	+	3
Hydrobromic Acid	HBr	50%	+	+	+	+	-	-	+	-	+	0	1
Hydrochloric Acid	HCI	38%	32%	+ *	+	+	-	+	0	0	+	0	1
Hydrofluoric Acid	HF	80%	-	40%*	40%**	+	-	+	0		40%	+/0	1
Hydrogen Cyanide	HCN	S	+	+	+	+	+	+	+	+	+	+	3
Hydrogen Peroxide	H ₂ O ₂	90%	40%	40%*	30%	+	+	30%	30%	+	+	+	1
Hydroiodic Acid	HI	S	+	+	+	+	-	-	n	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+/o	+	+	2
Hydroxylamine Sulphate	(NH2OH)2 * H2SO4	10%	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	s	+	+	0	+	-	+	+/o	+	0	+	(1)
lodine	12	S	0	-	+	+	-	+	+/0	+	0	+/0	
Iron Vitriol => Ferrous Sulphate	-												
sobutanol => Isobutyl Alcohol													
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%	_	+	+	+	+	+	+	0	+	+	1
Isopropanol => Isopropyl Alcohol		100 /6	_	т	т	т	т	т	т	0	т	т	
		1000/							,	,			
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂	100%	-	-	+	+	+	-	+/0	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	0	+	+	1
Isopropyl Benzene	C ₆ H ₅ CH(CH ₃) ₂	100%	-	-	0	+	+	+	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHClCH ₃	80%	-	-	0	+	+	+	-	0	0	+/0	2
Isopropyl Ether	C ₆ H ₁₄ O	100%	-	-	0	+	+	-	-	0	0	+	1
Kitchen Salt => Sodium Chloride	<u> </u>												
Lactic Acid	C ₃ H ₆ O ₃	100%	-	+	+	+	+/0	+	10%	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate		50%											2
	Pb(NO ₃) ₂	50%	+	+	+	+	+	+	+	+	+	+	_
Lead Sugar => Lead Acetate													
Lead Sulphate	PbSO ₄	S	+	+	+	+	+	+	+	+	+	+	(2)
Lead Tetraethyl	$Pb(C_2H_5)_4$	100%	+	+	+	+	+	+	-	n	+	+	3
Lime Milk => Calcium Hydroxide													
Liquid Ammonia => Ammonium F	Hydroxide												
Lithium Bromide	LiBr	s	+	+	+	+	+	+	+	+	+	+	1
Lithium Chloride	LiCl	s	+	+	+	+	-	+	+	+	+	n	1
Lunar Caustic => Silver Nitrate		-		-	•								
Magnesium Carbonate	MacO.	c	_	_	_	1	_	_	_	_	_	+/0	1
•	MgCO ₃	S	+	+	+	+	+	+	+	+	+		
Magnesium Chloride	MgCl ₂	S	+	+	+	+	0	+	+	+	+	+	1
Magnesium Hydroxide	Mg(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Magnesium Nitrate	$Mg(NO_3)_2$	S	+	+	+	+	+	+	+	+	+	+	1
Magnesium Sulphate	MgSO ₄	s	+	+	+	+	+	+	+	+	+	+/0	1
Maleic Acid	C ₄ H ₄ O ₄	s	+	+	+	+	+	+	+	0	+	+	1
Malic Acid	C ₄ H ₆ O ₅	s	+	+	+	+	+	+	+	+	+	+	1
	+ 0 0												

1.1.2018 5

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Manganese-II-Chloride	MnCl ₂	S	+	+	+	+	-	+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
MEK => Methyl Ethyl Ketone	He	1000/											0
Mercury Mercury-II-Chloride	HgCl ₂	100% s	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	$Hg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide	C ₆ H ₁₀ O	100%	-	-	n	n	+	-	+/0	-	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n	n	+	+	+	0	+/0	+/0	+	+	1
Methanol	CH ₃ OH	100%	-	-	+	+	+	0	+	+/0	+	+	1
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0	0	+	+	(1)
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	+/0	+	+	2
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	0	+	+	-	-	+	+	2
Methyl Callulage	C ₆ H ₃ (OH) ₂ CH ₃	S	+	+	+	+	+	+	-	+0	+	+	(1)
Methyl Cellulose Methyl Chloroacetate	CICH ₂ COOCH ₃	s 100%	+	+	+	+	+	+	+	+	+	+	1 2
Methyl Cyclopentane	C ₅ H ₉ CH ₃	100%	+	+	+	+	+	+	-	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃	100%	-	-	+	n	+	-	n	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%	-	-	+	-	+	-	+	-	+	+	1
Methyl Glycol	C ₃ H ₈ O ₂	100%	+	+	+	+	+	-	+/0	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	-	+	-	0	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	-	+	-	+/o	-	+	+	1
Methyl Methacrylate	C ₃ H ₅ COOCH ₃	100%	-	-	+	+	+	-	-	-	+	+	1
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%	n	n	+	+	+	+	+/0	n	+	+	1
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%	-	-	+	+	+	n	+/0	-	+	+	1
Methylacetyl Acetate	C ₅ H ₈ O ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methylamine	CH ₃ NH ₂	32%	+	0	+	0	+	-	+	+	+	+	2
Methylene Chloride => Dichloro I Mirabilit => Sodium Sulphate	vietnane												
Morpholine	C ₄ H ₉ ON	100%	_	_	+	_	+	n	n	-	+	+	2
Muriatic Acid => Hydrochloric Ac		100 /6	_	_	т	-		"	"	-	_	т	_
Natron => Sodium Bicarbonate													
Nickel-II-Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+	+	(2)
Nickel-II-Chloride	NiCl ₂	s	+	+	+	+	-	+	+	+	+	+	2
Nickel-II-Nitrate	Ni(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+/0	2
Nickel-II-Sulphate	NiSO ₄	S	+	+	+	+	+	+	+	+	+	+/0	2
Nitrate of Lime => Calcium Nitrate													
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	+	+	2
Nitro Propane Nitro Toluene	(CH ₃) ₂ CHNO ₂ C ₆ H ₄ NO ₂ CH ₃	100%	-	-	+	n	+	-	+/0	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	0 +	-	_	+	+	1
Octanol	C ₈ H ₁₇ OH	100%	-	-	+	+	+	+	+	-	+	+	1
Octyl Cresol	C ₁ 5H ₂₄ O	100%	-	-	+	+	+	0	n		+	+	(1)
Oil => Engine Oils	1 24												
Oleum	H ₂ SO ₄ + SO ₃	s	n	-	-	-	+	+	-	+	-	+	2
Orthophosphoric Acid => Phosph	noric Acid												
Oxalic Acid	(COOH) ₂	S	+	+	+	+	10%	+	+	+/0	+	+/0	1
Pentane	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	+	+	1
Pentanol => Amyl Alcohol													
Perchloric Acid	HCIO ₄	70%	n	10%	10%	+	-	+	+/0	+	+	n	1
Perchloroethylene => Tetrachloro	•												
Perhydrol => Hydrogen Peroxide Petroleum Ether		1000/		. /-						-			4
Phenole Phenole	CnH _{2n+2} C ₆ H ₅ OH	100% 100%	+	+/0	+	+	+	+	-	+	+	+	1
Phenyl Ethyl Ether	C ₆ H ₅ OC ₂ H ₅	100%	-	-	+	n	+	-	-	-	+	+	2
Phenyl Hydrazine	$C_6H5NHNH_2$	100%	-	-	0	+	+	0	-	-	0	+	2
Phosphoric Acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	1
Phosphorous Oxychloride	POCI ₃	100%	-	-	+	+	n	+	+	n	+	+	1
Phosphorous Trichloride	PCl ₃	100%	-	-	+	+	+	0	+	+/0	+	+	1
Phthalic Acid	C ₆ H ₄ (COOH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Picric Acid	$C_6H_2(NO_3)_3OH$	s	+	+	+	+	+	+	+	-	+	+	2
Piperidine	C ₅ H ₁₁ N	100%	-	-	n	n	+	-	-	-	n	+	2
Potash Alum => Potassium Alum													
Potassium Acetate	CH ₃ COOK	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Aluminium Sulphate	KAI(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	S	n	+	+	+	+	+	+	+	+	+	1

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Potassium Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	1
Potassium Bitartrate	KC ₄ H ₅ O ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Borate	KBO ₂	s	+	+	+	+	+	+	+	+	+	+	(1)
Potassium Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Potassium Bromide	KBr	S	+	+	+	+	10%	+	+	+	+	0.1	1
Potassium Carbonate	K ₂ CO ₃	s	+	+	+	+	+	+	+	55%	+	+	1
Potassium Chlorate	KCIO ₃		+	+				+				+	2
	•	S			+	+	+		+	+	+		
Potassium Chloride	KCI	S	+	+	+	+	-	+	+	+	+	+/0	1
Potassium Chromate	K ₂ CrO ₄	10%	+	+	+	+	+	+	+	+	+	+	3
Potassium Chrome Sulphate	KCr(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanate	KOCN	S	+	+	+	+	+	+	+	+	+	+	2
Potassium Cyanide	KCN	S	+	+	+	+	5%	+	+	+	+	5%	3
Potassium Cyanoferrate II	K ₄ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Dichromate	K ₂ Cr ₂ O ₇	s	+	+	+	+	25%	+	+	+	+	10%	3
Potassium Fluoride	KF .	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Hydroxyde	KOH	50%	+	+	+	+ (25	+	-	+	10%	+	+	1
TotassamTiyaroxyac	KOH	30 /0			•	°C)	•			10 /0		•	•
Potassium lodide	KI	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Nitrate	KNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Perchlorate	KCIO ₄	s	+	+	+	+	n	+	+	+	+	+	1
Potassium Permanganate	KMnO ₄									6%		+	2
9		S	+	+	+	+	+	+	+		+		
Potassium Persulphate	K ₂ S ₂ O ₈	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Phosphate	KH ₂ PO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Pyrochromate => Pot	tassium Dichromate												
Potassium Sulphate	K ₂ SO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Sulphite	K_2SO_3	S	+	+	+	+	+	+	+	+	+	+	1
Propionic Acid	C ₂ H ₅ COOH	100%	0	+	+	+	+	+	+	+/0	+	+	1
Propionitrile	CH ₃ CH ₂ CN	100%	n	n	+	+	+	+	-	-	+	+	2
Propyl Acetate	CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	+	+	1
Propylene Glycol	CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	1
Prussic Acid => Hydrogen Cyan			•			•		•	•			·	•
Pyridine	C ₅ H ₅ N	100%	_		0	_	+	-		0	+	+	2
Pyrrole	C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	0	+	+	2
•		100%	11	11	+	11	+	-	-	-	+	+	2
Roman Vitriol => Copper Sulpha												,	
Salicylic Acid	HOC ₆ H ₄ COOH	S	+	+	+	+	+	+	+	+	+	+/0	1
Salmiac => Ammonium Chloride)												
Saltpeter => Potassium Nitrate													
Silic Acid	SiO ₂ * x H ₂ O	S	+	+	+	+	+	+	+	+	+	+	1
Silver Bromide	AgBr	S	+	+	+	+	+/0	+	+	+	+	+	1
Silver Chloride	AgCl	s	+	+	+	+	-	+	+	+	+	+/0	1
Silver Nitrate	AgNO ₃	S	+	+	+	+	+	+	+	+	+	+/0	3
Slaked Lime => Calcium Hydrox	- 0												
Soda => Sodium Carbonate													
Sodium Acetate	NaCH ₃ COO	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Benzoate	C ₆ H ₅ COONa	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bicarbonate	NaHCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphate	NaHSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphite	NaHSO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Borate	NaBO ₂	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bromate	NaBrO ₃	s	+	+	+	+	+	+	+	+	+	+	3
Sodium Bromide	NaBr	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Carbonate	Na ₂ CO ₃	s	+	+	+	+	+/0	+	+	+	+	+	1
Sodium Chlorate	NaClO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Chloride	NaCl	s	+	+	+	+	-	+	+	+	+	+	1
Sodium Chlorite	NaClO ₂	24%	+	+	+	+	10%	+	+	+		10%	2
Sodium Chromate	2										+		3
	Na ₂ CrO ₄	S	+	+	+	+	+	+	+	+	+	+	
Sodium Cyanide	NI-ONI	S	+	+	+	+	+	+	+	+	+	+	3
0 II DI I	NaCN			+	+	+	+	+	+	+	+	+	3
Sodium Dichromate	Na ₂ Cr ₂ O ₇	s	+										1
Sodium Dithionite	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄	s s	+	10%	10%	+	+	n	n	+	10%	+/0	
	Na ₂ Cr ₂ O ₇					+	+ 10%	n +	n +	+	10%	+/0	1
Sodium Dithionite	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF	S	+	10%	10%								
Sodium Dithionite Sodium Fluoride	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF	S	+	10%	10%		10%						
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate	s s	+	10%	10%	+	10%	+	+	+	+	+	1
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate	s s	+	10%	10%	+ (60%/	10%	+	+	+	+	+	1
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$ Sodium Hydroxide	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate NaOH	s s 50%	+ + + +	10% + +	10% + +	+ + (60%/ 25 °C) +	10%	- +	+ + +	+ 30% +	+ + 0	+ + > 10%	1
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$ Sodium Hydroxide Sodium Hypochlorite Sodium lodide	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate NaOH NaOCI + NaCI NaI	s s 50% 12% s	+ + + + + +	10% + + +	10% + + 0 +	+ + (60%/ 25 °C) + +	10% + - +	+ - + + +	+ + + +	+ 30% + +	+ + 0 +	+ + > 10% +	1 2 1
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$ Sodium Hydroxide Sodium Hypochlorite Sodium lodide Sodium Metaphosphate	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate NaOH NaOCI + NaCI NaI (NaPO ₃) _n	s s 50% 12% s	+ + + + + + + +	10% + + + + +	10% + + 0 +	+ + (60%/ 25 °C) + + +	10% + - + +	+ + + + +	+ + + + + +	+ 30% + + +	+ + 0 + +	+ + > 10% + +	1 1 2 1
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$ Sodium Hydroxide Sodium Hypochlorite Sodium lodide Sodium Metaphosphate Sodium Nitrate	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate NaOH NaOCI + NaCI NaI (NaPO ₃) _n NaNO ₃	s s 50% 12% s s s	+ + + + + + +	10% + + + + + +	10% + + 0 + +	+ (60%/ 25°C) + + +	10% + - + + +	+ + + + + +	+ + + + + + +	+ 30% + + + +	+ + 0 + + + + +	+ + > 10% + +	1 1 2 1 1 1
Sodium Dithionite Sodium Fluoride Sodium Hydrogen Sulphate => \$ Sodium Hydroxide Sodium Hypochlorite Sodium lodide Sodium Metaphosphate	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄ NaF Sodium Bisulphate NaOH NaOCI + NaCI NaI (NaPO ₃) _n	s s 50% 12% s	+ + + + + + + +	10% + + + + +	10% + + 0 +	+ + (60%/ 25 °C) + + +	10% + - + +	+ + + + +	+ + + + + +	+ 30% + + +	+ + 0 + +	+ + > 10% + +	1 1 2 1

1.1.2018 7

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Sodium Perborate	NaBO ₂ *H ₂ O ₂	S	+	+/0	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	S	+	+	+	+	10%	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	s	+	+	+	+	+	+	+	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	s	+	+	+	+	+	n	n	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	S	+	+/0	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na ₂ SiO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Sulphite	Na ₂ SO ₃	s	+	+	+	+	50%	+	+	+	+	50%	1
Sodium Tetraborate	Na ₂ B ₄ O ₇ * 10 H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Thiosulphate	Na ₂ S ₂ O ₃	S	+	+	+	+	25%	+	+	+	+	25%	1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	S	+	+	+	+	+	+/0	+	+	+	+	1
Starch	(C ₆ H ₁₀ O ₅) _n	s	+	+	+	+	+	+	n	+	+	+	1
Starch Gum	(96.1095/11	s	+	+	+	+	+	+	+	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100%	-	-	0	+	+	0	-	-	0	+	2
Sublimate => Mercury-II-Chloride		10070											_
Succinic Acid	C ₄ H ₆ O ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sugar Syrup	-41 16 -4	S	+	+	+	+		+	+	+	+	+	1
Sulphur Chloride => Disulphur D	ichloride	5	+	т	т	Т	+	T	т	7	Т	т	1
		000/	200/	E00/	050/		000/			200/	000/		4
Sulphuric Acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	+	30%	80%	+	1
Sulphuric Acid, fuming> Oleun							100/						(4)
Sulphurous Acid	H ₂ SO ₃	S	+	+	+	+	10%	+	+	+	+	+	(1)
Sulphuryl Chloride	SO ₂ Cl ₂	100%	-	-	-	0	n	+	0	-	-	n	1
Tannic Acid	C ₇₆ H ₅₂ O ₄₆	50%	+	+	+	+	+	+	+	+	+	+	1
Tartaric Acid	C ₄ H ₆ O ₆	S	50%	+	+	+	+	+	+/0	+	+	+	1
Tetrachloro Ethane	C ₂ H ₂ Cl ₄	100%	-	-	0	+	+	0	-	0	0	+	3
Tetrachloro Ethylene	C ₂ Cl ₄	100%	-	-	0	+	+	0	-	0	0	+	3
Tetrachloromethane => Carbon	Tetrachloride												
Tetrahydro Furane	C ₄ H ₈ O	100%	-	-	0	-	+	-	-	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	-	0	+	3
Tetralin => Tetrahydro Naphthale	ene												
THF => Tetrahydrofurane													
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	s	+	0	+	+	-	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	s	n	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	s	n	+	+	+	-	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	+	+	2
Tributyl Phosphate	(C ₄ H ₉) ₃ PO ₄	100%	n	-	+	+	+	-	+	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	0	0	+	3
Trichloro Methane => Chloroforn							-						
Trichloroacetaldehyde Hydrate	CCl ₃ CH(OH) ₂	S	-		0	-	+	0	0	n	+	+	2
Trichloroacetic Acid	CCI ₃ COOH	50%	-	+	+	+	-	-	0	+/0	+	+	1
Tricresyl Phosphate	(C ₇ H ₇) ₃ PO ₄	90%	-	-	+	n	+	0	+	+	+	+	2
Triethanol Amine	N(C ₂ H ₄ OH) ₃	100%	+	0	+	n	+	-	+/0	0	+	+	1
Trilene => Trichloro Ethane	11(02114011)3	100/0	1	0					170	J		•	
Trioctyl Phosphate	(C-H) PO	100%	n	_	_	1	_	0	_	_	_	_	2
Trisodium Phosphate	(C ₈ H ₁₇) ₃ PO ₄			-	+	+	+	0	+	+	+	+	
•	Na ₃ PO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Urea Visual A a state	CO(NH ₂) ₂	\$	+	+/0	+	+	+	+	+	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-	-	+	+	+	n	n	+/o	+	+	2
Water Glass => Sodium Silicate	// :												
Xylene	C ₆ H ₄ (CH ₃) ₂	100%	-	-	-	+	+	0	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	s	+	+	+	+	+	-	+	+	+	+	1
Zinc Chloride	ZnCl ₂	s	+	+	+	+	-	+	+	+	+	n	1
Zinc Sulphate	ZnSO ₄	S	+	+	+	+	+	+	+	+	+	+/0	1

Chlorine dioxide is capable of penetrating through PVDF without destroying it. This can lead to damage to PVDF-coated parts.

8 1.1.2018

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+ = resistant
o = conditionally resistant
- = not resistant

The data is taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetone	all	-
Acetylene tetrabromide	100	-
Alums of all kinds, aqueous	all	+
Aluminium salts, aqueous	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Ammonium salts	all	+
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Hydrogen bromide	10	+
Butanol	100	+
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Butyl acetate	100	-
Calcium chloride, aqueous	all	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Fertilizing manure salt, aqueous	all	+
Ferric chloride, aqueous	all	+
Glacial acetic acid	100	-
Acetic ester	100	_
Acetic ester Acetic acid, aqueous	100	+
Acetic acid, aqueous	50	0
	50	0
Acetic acid (wine vinegar)	100	0
Acetic acid anhydride		-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Formaldehyde, aqueous	30	0
Difluorodichloromethane	100	-
Glycerol	100	-
Glucose, aqueous	saturated	+
Halogens	all	-
Urea, aqueous	all	+
Caustic potash	15	+
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+

Corrosive agent	Concentration in %	Evaluation
Creosote		-
Sodium chloride, aqueous	all	+
Carbonic acid	all	+
Copper sulphate, aqueous	all	+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sodium hydroxide	aqueous	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Nitric acid, aqueous	25	+
Hydrochloric acid	15	+
Sulphur dioxide, gaseous	all	+
Carbon disulphide	100	-
Sulphuric acid	30	+
Hydrogen sulphide, gaseous	100	-
Silver nitrate	10	+
Tetrachloromethane	100	-
Ink		+
Toluene	100	-
Trichloroethylene	100	-
Hydrogen peroxide	to 10	+
Xylene	100	-
Zinc salts	all	+

10 1.1.2018

ПромХимТех - дистрибьютор и сервисный партнер ProMinent www.promhimtech.ru zakaz@promhimtech.ru

ProMinent®

Product catalogue 2018

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2018.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview